1/5.9 +1/8.11 +1/11.14 +….+ 1/x+(x+5) =101/1540 x+1/3 + 1/6 + 1/10+….+ 2/x.(x+1)=1 Làm ơn ik mà mik đang cần gấp 16/11/2021 Bởi Delilah 1/5.9 +1/8.11 +1/11.14 +….+ 1/x+(x+5) =101/1540 x+1/3 + 1/6 + 1/10+….+ 2/x.(x+1)=1 Làm ơn ik mà mik đang cần gấp
$a/\dfrac{1}{5.8}+\dfrac{1}{8.11}+….+\dfrac{1}{x(x+5)}=\dfrac{101}{1540}$ $⇔\dfrac{1}{5}.5.(\dfrac{1}{5.8}+\dfrac{1}{8.11}+….+\dfrac{1}{x(x+5)})=\dfrac{101}{1540}$ $⇔\dfrac{1}{5}.(\dfrac{5}{5.8}+\dfrac{5}{8.11}+….+\dfrac{5}{x(x+5)})=\dfrac{101}{1540}$ $⇔\dfrac{1}{5}.(\dfrac{1}{5}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-……+\dfrac{1}{x}-\dfrac{1}{x+5}=\dfrac{101}{1540}$ $⇔\dfrac{1}{5}.(\dfrac{1}{5}-\dfrac{1}{x+5})=\dfrac{101}{1540}$ $⇒\dfrac{1}{5}-\dfrac{1}{x+5}=\dfrac{505}{1540}$ $⇔\dfrac{1}{x+5}=\dfrac{1}{5}-\dfrac{505}{1540}=\dfrac{-197}{1540}$ $⇒x+5=\dfrac{-1540}{197}$ $⇒x=\dfrac{-2525}{197} (???)$ b/ $x+\dfrac{1}{3}+ \dfrac{1}{6} + \dfrac{1}{10}+….+ \dfrac{2}{x.(x+1)}=1$ $⇔\dfrac{1}{3}+ \dfrac{1}{6} + \dfrac{1}{10}+….+ \dfrac{2}{x.(x+1)}= 1 – x$ $⇔\dfrac{2}{6} + \dfrac{2}{12} + \dfrac{2}{20} + … + \dfrac{2}{x(x + 1)} = 1 – x$ $⇔2(\dfrac{1}{2.3} + \dfrac{1}{3.4} + \dfrac{1}{4.5} + … + \dfrac{1}{x(x + 1)} = 1 – x$ $⇔\dfrac{1}{2} – \dfrac{1}{3} + \dfrac{1}{3} – \dfrac{1}{4} +\dfrac{ 1}{4} – \dfrac{1}{5} + … + \dfrac{1}{x} – \dfrac{1}{x + 1} = \dfrac{1 – x}{2}$ $⇔\dfrac{1}{2} – \dfrac{1}{x + 1)} = \dfrac{(1 – x}{2}$ $⇔\dfrac{(x + 1 – 2}{2.(x + 1} = \dfrac{(1 – x}{2}$ $⇒ (\dfrac{x – 1}{x + 1} = 1-x$ $⇔ \dfrac{1}{x + 1} = -1$ $⇔ x + 1 = -1 $ $⇒ x = -2$ Bình luận
$a/\dfrac{1}{5.8}+\dfrac{1}{8.11}+….+\dfrac{1}{x(x+5)}=\dfrac{101}{1540}$
$⇔\dfrac{1}{5}.5.(\dfrac{1}{5.8}+\dfrac{1}{8.11}+….+\dfrac{1}{x(x+5)})=\dfrac{101}{1540}$
$⇔\dfrac{1}{5}.(\dfrac{5}{5.8}+\dfrac{5}{8.11}+….+\dfrac{5}{x(x+5)})=\dfrac{101}{1540}$
$⇔\dfrac{1}{5}.(\dfrac{1}{5}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-……+\dfrac{1}{x}-\dfrac{1}{x+5}=\dfrac{101}{1540}$
$⇔\dfrac{1}{5}.(\dfrac{1}{5}-\dfrac{1}{x+5})=\dfrac{101}{1540}$
$⇒\dfrac{1}{5}-\dfrac{1}{x+5}=\dfrac{505}{1540}$
$⇔\dfrac{1}{x+5}=\dfrac{1}{5}-\dfrac{505}{1540}=\dfrac{-197}{1540}$
$⇒x+5=\dfrac{-1540}{197}$
$⇒x=\dfrac{-2525}{197} (???)$
b/
$x+\dfrac{1}{3}+ \dfrac{1}{6} + \dfrac{1}{10}+….+ \dfrac{2}{x.(x+1)}=1$
$⇔\dfrac{1}{3}+ \dfrac{1}{6} + \dfrac{1}{10}+….+ \dfrac{2}{x.(x+1)}= 1 – x$
$⇔\dfrac{2}{6} + \dfrac{2}{12} + \dfrac{2}{20} + … + \dfrac{2}{x(x + 1)} = 1 – x$
$⇔2(\dfrac{1}{2.3} + \dfrac{1}{3.4} + \dfrac{1}{4.5} + … + \dfrac{1}{x(x + 1)} = 1 – x$
$⇔\dfrac{1}{2} – \dfrac{1}{3} + \dfrac{1}{3} – \dfrac{1}{4} +\dfrac{ 1}{4} – \dfrac{1}{5} + … + \dfrac{1}{x} – \dfrac{1}{x + 1} = \dfrac{1 – x}{2}$
$⇔\dfrac{1}{2} – \dfrac{1}{x + 1)} = \dfrac{(1 – x}{2}$
$⇔\dfrac{(x + 1 – 2}{2.(x + 1} = \dfrac{(1 – x}{2}$
$⇒ (\dfrac{x – 1}{x + 1} = 1-x$
$⇔ \dfrac{1}{x + 1} = -1$
$⇔ x + 1 = -1 $
$⇒ x = -2$