1. 6 + 5(2 – 4x) = 3(1 – 3x) 2 . 3(3x – 1) + 2 = 5(1 – 2x) – 1 3. 2(x + 1) – 3(x – 1) = 36 – 9(x + 3) 4. 5(2x – 3) – 4(5x – 17) = 19 – 2(x + 11) 5.

1. 6 + 5(2 – 4x) = 3(1 – 3x)
2 . 3(3x – 1) + 2 = 5(1 – 2x) – 1
3. 2(x + 1) – 3(x – 1) = 36 – 9(x + 3)
4. 5(2x – 3) – 4(5x – 17) = 19 – 2(x + 11)
5. 4(x + 3) – 7x + 17 = 8(5x – 1) + 166
6. 17 – 14(x + 1) = 13 – 4(x + 1) – 5(x – 3)

0 bình luận về “1. 6 + 5(2 – 4x) = 3(1 – 3x) 2 . 3(3x – 1) + 2 = 5(1 – 2x) – 1 3. 2(x + 1) – 3(x – 1) = 36 – 9(x + 3) 4. 5(2x – 3) – 4(5x – 17) = 19 – 2(x + 11) 5.”

  1. 1) 6 + 5(2 – 4x) = 3(1 – 3x)

    ⇔ 6 + 10 – 20x = 3 – 9x

    ⇔ -20x + 9x = 3 – 6 – 10

    ⇔ -11x = -13

    ⇔ x = `\frac{13}{11}`

    Vậy phương trình có S = {`\frac{13}{11}`}

    2) 3(3x – 1) + 2 = 5(1 – 2x) – 1

    ⇔ 9x – 3 + 2 = 5 – 10x – 1

    ⇔ 9x + 10x = 5 – 1 + 3 – 2

    ⇔ 19x = 5

    ⇔ x = `\frac{5}{19}`

    Vậy…

    3) 2(x + 1) – 3(x – 1) = 36 – 9(x + 3)

    ⇔ 2x + 2 – 3x + 3 = 36 – 9x – 27

    ⇔ 2x – 3x + 9x = 36 – 27 – 2 – 3

    ⇔ 8x = 4

    ⇔ x = `\frac{1}{2}`

    Vậy…

    4) 5(2x – 3) – 4(5x – 17) = 19 – 2(x + 11)

    ⇔ 10x – 15 – 20x + 68 = 19 – 2x – 22

    ⇔ 10x – 20x + 2x = 19 – 22 + 15 – 68

    ⇔ -8x = -56

    ⇔ x = -7

    Vậy…

    5) 4(x + 3) – 7x + 17 = 8(5x – 1) + 166

    ⇔ 4x + 12 – 7x + 17 = 40x – 8 + 166

    ⇔ 4x – 7x – 40x = -8 + 166 – 12 – 17

    ⇔ -43x = 129

    ⇔ x = -3

    Vậy…

    6) 17 – 14(x + 1) = 13 – 4(x + 1) – 5(x – 3)

    ⇔ 17 – 14x – 14 = 13 – 4x – 4 – 5x + 15

    ⇔ -14x + 4x + 5x = 13 – 4 + 15 – 17 + 14

    ⇔ -5x = 21

    ⇔ x = `\frac{-21}{5}`

    Vậy…

    Bình luận

Viết một bình luận