`1/(a+b)+1/(b+c)+1/(a+c)=6` `CM:1/(3a+3b+2c)+1/(3a+2b+3c)+1/(2a+3b+3c) ≤3/2`

`1/(a+b)+1/(b+c)+1/(a+c)=6`
`CM:1/(3a+3b+2c)+1/(3a+2b+3c)+1/(2a+3b+3c) ≤3/2`

0 bình luận về “`1/(a+b)+1/(b+c)+1/(a+c)=6` `CM:1/(3a+3b+2c)+1/(3a+2b+3c)+1/(2a+3b+3c) ≤3/2`”

  1. Giải thích các bước giải:

    Ta có:

    $A=\dfrac{2}{a+b}+\dfrac{1}{a+c}+\dfrac{1}{b+c}$

    $\to A=\dfrac{1}{a+b}+\dfrac{1}{a+b}+\dfrac{1}{a+c}+\dfrac{1}{b+c}$

    $\to A=\dfrac{1^2}{a+b}+\dfrac{1^2}{a+b}+\dfrac{1^2}{a+c}+\dfrac{1^2}{b+c}$

    $\to A\ge \dfrac{(1+1+1+1)^2}{(a+b)+(a+b)+(a+c)+(b+c)}$

    $\to A\ge \dfrac{16}{3a+3b+2c}$

    $\to \dfrac1{3a+3b+2c}\le \dfrac1{16}(\dfrac{2}{a+b}+\dfrac{1}{a+c}+\dfrac{1}{b+c})$

    Tương tự 

    $\dfrac1{3a+2b+3c}\le \dfrac1{16}(\dfrac{2}{a+c}+\dfrac{1}{a+b}+\dfrac{1}{b+c})$

    $ \dfrac1{2a+3b+3c}\le \dfrac1{16}(\dfrac{2}{b+c}+\dfrac{1}{a+c}+\dfrac{1}{b+c})$

    Cộng vế với vế

    $\to VT\le \dfrac1{16}\cdot 4(\dfrac1{a+b}+\dfrac{1}{b+c}+\dfrac1{c+a})$

    $\to VT\le \dfrac1{16}\cdot 4\cdot 6$

    $\to VT\le \dfrac32$

    Bình luận

Viết một bình luận