1, a, giải hpt khi m=0 b,tìm m để hệ phương trình có nghiệm x-y=0 và căn x^2 – 3x +m – căn y-3=0 28/07/2021 Bởi Arianna 1, a, giải hpt khi m=0 b,tìm m để hệ phương trình có nghiệm x-y=0 và căn x^2 – 3x +m – căn y-3=0
Đáp án: $\begin{array}{l}Đkxđ:y \ge 3\\a)Khi\,m = 0 \Rightarrow \left\{ \begin{array}{l}x – y = 0\\{x^2} – 3x – \sqrt {y – 3} = 0\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}x = y\\x\left( {x – 3} \right) – \sqrt {x – 3} = 0\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}x = y\\\sqrt {x – 3} \left( {x\sqrt {x – 3} – 1} \right) = 0\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}x = y\\\left[ \begin{array}{l}x = 3\\x\sqrt {x – 3} = 1\end{array} \right.\end{array} \right. \Rightarrow \left[ \begin{array}{l}x = y = 3\\{x^2}\left( {x – 3} \right) = 1\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}x = y = 3\\{x^3} – 3{x^2} – 1 = 0\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}x = y = 3\\x = y = 3,1\end{array} \right.\\b)\\\left\{ \begin{array}{l}x = y\\{x^2} – 3x + m – \sqrt {y – 3} = 0\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}x = y\\{x^2} – 3x + m = \sqrt {x – 3} \end{array} \right.\\Hpt\,có\,nghiệm \Leftrightarrow {x^2} – 3x + m \ge 0\\ \Rightarrow \Delta \le 0\\ \Rightarrow {3^2} – 4m \le 0\\ \Rightarrow m \ge \frac{9}{4}\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
Đkxđ:y \ge 3\\
a)Khi\,m = 0 \Rightarrow \left\{ \begin{array}{l}
x – y = 0\\
{x^2} – 3x – \sqrt {y – 3} = 0
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
x = y\\
x\left( {x – 3} \right) – \sqrt {x – 3} = 0
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
x = y\\
\sqrt {x – 3} \left( {x\sqrt {x – 3} – 1} \right) = 0
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
x = y\\
\left[ \begin{array}{l}
x = 3\\
x\sqrt {x – 3} = 1
\end{array} \right.
\end{array} \right. \Rightarrow \left[ \begin{array}{l}
x = y = 3\\
{x^2}\left( {x – 3} \right) = 1
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = y = 3\\
{x^3} – 3{x^2} – 1 = 0
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = y = 3\\
x = y = 3,1
\end{array} \right.\\
b)\\
\left\{ \begin{array}{l}
x = y\\
{x^2} – 3x + m – \sqrt {y – 3} = 0
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
x = y\\
{x^2} – 3x + m = \sqrt {x – 3}
\end{array} \right.\\
Hpt\,có\,nghiệm \Leftrightarrow {x^2} – 3x + m \ge 0\\
\Rightarrow \Delta \le 0\\
\Rightarrow {3^2} – 4m \le 0\\
\Rightarrow m \ge \frac{9}{4}
\end{array}$