1. a,n+13 chia hết cho n + 7 b, n-7 chia hết cho n+5 c, 2n + 13 chia hết cho n+5 d,5n +45 chia hết cho n+3 03/11/2021 Bởi Amara 1. a,n+13 chia hết cho n + 7 b, n-7 chia hết cho n+5 c, 2n + 13 chia hết cho n+5 d,5n +45 chia hết cho n+3
Đáp án + Giải thích các bước giải: Bổ sung đề : Tìm `x∈Z` Ta có : `a,n+13=(n+7)+6` Vì `(n+7)` $\vdots$ `n+7` Nên để `n+13` $\vdots$ `n+7` Thì `6` $\vdots$ `n+7` `(ĐK:n+7\ne0→n\ne-7)` `→n+7∈Ư(6)` `→n+7∈{±1;±2;±3;±6}` `→n∈{-8;-6;-9;-5;-10;-4;-13;-1}` ( Thỏa Mãn ) Vậy để `n+13` $\vdots$ `n+7` thì `n∈{-8;-6;-9;-5;-10;-4;-13;-1}` `——————-` `b,n-7=(n+5)-12` Vì `(n+5)` $\vdots$ `n+5` Nên để `n-7` $\vdots$ `n+5` Thì `12` $\vdots$ `n+5` `(ĐK:n+5\ne0→n\ne-5)` `→n+5∈Ư(12)` `→n+5∈{±1;±2;±3;±4;±6;±12}` `→n∈{-6;-4;-7;-3;-8;-2;-9;-1;-11;1;-17;7}` ( Thỏa Mãn ) Vậy để `n-7` $\vdots$ `n+5` thì `n∈{-6;-4;-7;-3;-8;-2;-9;-1;-11;1;-17;7}` `———————` `c,2n+13=(2n+10)+3=2(n+5)+3` Vì `2(n+5)` $\vdots$ `n+5` Nên để `2n+13` $\vdots$ `n+5` Thì `3` $\vdots$ `n+5` `(ĐK:n+5\ne0→n\ne-5)` `→n+5∈Ư(3)` `→n+5∈{±1;±3}` `→n∈{-6;-4;-8;-2}` ( Thỏa Mãn ) Vậy để `2n+13` $\vdots$ `n+5` thì `n∈{-6;-4;-8;-2}` `——————-` `d,5n+45=(5n+15)+30=5(n+3)+30` Vì `5(n+3)` $\vdots$ `n+3` Nên để `5n+45` $\vdots$ `n+3` Thì `30` $\vdots$ `n+3` `(ĐK:n+3\ne0→n\ne-3)` `→n+3∈Ư(30)` `→n+3∈{±1;±2;±3;±5;±6;±10;±15;±30}` `→n∈{-4;-5;-6;-8;-9;-13;-18;-33;-2;-1;0;2;3;7;12;27}` ( Thỏa Mãn ) Vậy để `5n+45` $\vdots$ `n+3` thì `n∈{-4;-5;-6;-8;-9;-13;-18;-33;-2;-1;0;2;3;7;12;27}` Bình luận
Đáp án: … Giải thích các bước giải: `a,n+13 \vdots n+7` `\to (n+7) +6 \vdots n+7` `\to 6 \vdots n+7` `\to n+7 ∈Ư(6)` `\to n+7 ∈{1,-1,2,-2,3,-3,6,-6}` `\to n∈ {-6,-8,-5,-9,-4,-10,-1,-13}` Vậy `n∈{-6,-8,-5,-9,-4,-10,-1,-13}` , `b,n-7 \vdots n+5` `\to (n+5) -12 \vdots n+5` `\to -12 \vdots n+5` `\to n+5∈Ư(-12)` `\to n+5∈{1,-1,2,-2,3,-3,4,-4,6,-6,12,-12}` `\to n∈{-4,-6,-3,-7,-2,-8,-1,-9,1,-11,7,-17}` Vậy `n∈{-4,-6,-3,-7,-2,-8,-1,-9,1,-11,7,-17}` , `c,2n+13 \vdots n+5` `\to 2n+10+3 \vdots n+5` `\to 2(n+5)+3 \vdots n+5` `\to 3 \vdots n+5` `\to n+7 ∈Ư(3)` `\to n+7∈{1,-1,-3,3}` `\to n∈{-6,-8,-10,-4}` Vậy `n∈{-6,-8,-10,-4}` , `d,5n+45 \vdots n+3` `\to 5n+15+30 \vdots n+3` `\to 5(n+3)+30 \vdots n+3` `\to 30 \vdots n+3` `\to n+3 ∈Ư(30)` `\to n+3∈{1,-1,2,-2,3,-3,5,-5,6,-6,10,-10,15,-15,30,-30}` `\to n∈ {-2,-4,-1,-5,0,-6,2,-8,3,-9,7,-13,12,-18,17,-33}` Vậy `n∈ {-2,-4,-1,-5,0,-6,2,-8,3,-9,7,-13,12,-18,27,-33}` Bình luận
Đáp án + Giải thích các bước giải:
Bổ sung đề : Tìm `x∈Z`
Ta có :
`a,n+13=(n+7)+6`
Vì `(n+7)` $\vdots$ `n+7`
Nên để `n+13` $\vdots$ `n+7`
Thì `6` $\vdots$ `n+7` `(ĐK:n+7\ne0→n\ne-7)`
`→n+7∈Ư(6)`
`→n+7∈{±1;±2;±3;±6}`
`→n∈{-8;-6;-9;-5;-10;-4;-13;-1}` ( Thỏa Mãn )
Vậy để `n+13` $\vdots$ `n+7` thì `n∈{-8;-6;-9;-5;-10;-4;-13;-1}`
`——————-`
`b,n-7=(n+5)-12`
Vì `(n+5)` $\vdots$ `n+5`
Nên để `n-7` $\vdots$ `n+5`
Thì `12` $\vdots$ `n+5` `(ĐK:n+5\ne0→n\ne-5)`
`→n+5∈Ư(12)`
`→n+5∈{±1;±2;±3;±4;±6;±12}`
`→n∈{-6;-4;-7;-3;-8;-2;-9;-1;-11;1;-17;7}` ( Thỏa Mãn )
Vậy để `n-7` $\vdots$ `n+5` thì `n∈{-6;-4;-7;-3;-8;-2;-9;-1;-11;1;-17;7}`
`———————`
`c,2n+13=(2n+10)+3=2(n+5)+3`
Vì `2(n+5)` $\vdots$ `n+5`
Nên để `2n+13` $\vdots$ `n+5`
Thì `3` $\vdots$ `n+5` `(ĐK:n+5\ne0→n\ne-5)`
`→n+5∈Ư(3)`
`→n+5∈{±1;±3}`
`→n∈{-6;-4;-8;-2}` ( Thỏa Mãn )
Vậy để `2n+13` $\vdots$ `n+5` thì `n∈{-6;-4;-8;-2}`
`——————-`
`d,5n+45=(5n+15)+30=5(n+3)+30`
Vì `5(n+3)` $\vdots$ `n+3`
Nên để `5n+45` $\vdots$ `n+3`
Thì `30` $\vdots$ `n+3` `(ĐK:n+3\ne0→n\ne-3)`
`→n+3∈Ư(30)`
`→n+3∈{±1;±2;±3;±5;±6;±10;±15;±30}`
`→n∈{-4;-5;-6;-8;-9;-13;-18;-33;-2;-1;0;2;3;7;12;27}` ( Thỏa Mãn )
Vậy để `5n+45` $\vdots$ `n+3` thì `n∈{-4;-5;-6;-8;-9;-13;-18;-33;-2;-1;0;2;3;7;12;27}`
Đáp án:
…
Giải thích các bước giải:
`a,n+13 \vdots n+7`
`\to (n+7) +6 \vdots n+7`
`\to 6 \vdots n+7`
`\to n+7 ∈Ư(6)`
`\to n+7 ∈{1,-1,2,-2,3,-3,6,-6}`
`\to n∈ {-6,-8,-5,-9,-4,-10,-1,-13}`
Vậy `n∈{-6,-8,-5,-9,-4,-10,-1,-13}`
,
`b,n-7 \vdots n+5`
`\to (n+5) -12 \vdots n+5`
`\to -12 \vdots n+5`
`\to n+5∈Ư(-12)`
`\to n+5∈{1,-1,2,-2,3,-3,4,-4,6,-6,12,-12}`
`\to n∈{-4,-6,-3,-7,-2,-8,-1,-9,1,-11,7,-17}`
Vậy `n∈{-4,-6,-3,-7,-2,-8,-1,-9,1,-11,7,-17}`
,
`c,2n+13 \vdots n+5`
`\to 2n+10+3 \vdots n+5`
`\to 2(n+5)+3 \vdots n+5`
`\to 3 \vdots n+5`
`\to n+7 ∈Ư(3)`
`\to n+7∈{1,-1,-3,3}`
`\to n∈{-6,-8,-10,-4}`
Vậy `n∈{-6,-8,-10,-4}`
,
`d,5n+45 \vdots n+3`
`\to 5n+15+30 \vdots n+3`
`\to 5(n+3)+30 \vdots n+3`
`\to 30 \vdots n+3`
`\to n+3 ∈Ư(30)`
`\to n+3∈{1,-1,2,-2,3,-3,5,-5,6,-6,10,-10,15,-15,30,-30}`
`\to n∈ {-2,-4,-1,-5,0,-6,2,-8,3,-9,7,-13,12,-18,17,-33}`
Vậy `n∈ {-2,-4,-1,-5,0,-6,2,-8,3,-9,7,-13,12,-18,27,-33}`