1 xác định hàm số a,c của hàm số y= ax^2 +x +c b) parabol đi qua 1 điểm (3, -4) có trục đối xứng= -3 phần 2 c) parabol có đỉnh i( 2,-2) d) parapol đ

1 xác định hàm số a,c của hàm số y= ax^2 +x +c
b) parabol đi qua 1 điểm (3, -4) có trục đối xứng= -3 phần 2
c) parabol có đỉnh i( 2,-2)
d) parapol đi qua điểm d( -1,6) có tung độ = -1 phần 4

0 bình luận về “1 xác định hàm số a,c của hàm số y= ax^2 +x +c b) parabol đi qua 1 điểm (3, -4) có trục đối xứng= -3 phần 2 c) parabol có đỉnh i( 2,-2) d) parapol đ”

  1. \[\begin{array}{l}
    y = a{x^2} + x + c\,\,\,\,\left( P \right)\\
    b)\,\,\,\left( P \right)\,\,\,co\,\,\,truc\,\,doi\,\,xung\,\,la\,\,\,x = – \frac{3}{2}\\
    \Rightarrow – \frac{1}{{2a}} = – \frac{3}{2} \Leftrightarrow a = \frac{1}{3} \Rightarrow \left( P \right):\,\,\,y = \frac{1}{3}{x^2} + x + c.\\
    \left( P \right)\,\,\,di\,\,\,qua\,\,diem\,\,\,\left( {3; – 4} \right)\\
    \Rightarrow – 4 = \frac{1}{3}{.3^2} + 3 + c \Leftrightarrow c = – 10.\\
    Vay\,\,\,a = \frac{1}{3};\,\,c = – 10.\\
    c)\,\,\,I\left( {2;\,\, – 2} \right)\\
    \left( P \right)\,\,\,co\,\,\,dinh\,\,\,I\left( {2;\,\, – 2} \right)\\
    \Rightarrow \left\{ \begin{array}{l}
    – \frac{1}{{2a}} = 2\\
    a{.2^2} + 2 + c = – 2
    \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
    a = – \frac{1}{4}\\
    c = – 5
    \end{array} \right.\\
    Vay\,\,\,a = – \frac{1}{4};\,\,\,c = – 5.\\
    d)\,\,\,\left( P \right)\,\,\,\,cat\,\,\,Oy\,\,\,tai\,\,\,diem\,\,\,co\,\,tung\,\,do\,\,\, = – \frac{1}{4}\\
    \Rightarrow \left( P \right)\,\,\,\,di\,\,\,qua\,\,\,C\left( {0; – \frac{1}{4}} \right)\\
    \Rightarrow c = – \frac{1}{4}.\\
    \Rightarrow \left( P \right):\,\,\,y = a{x^2} + x – \frac{1}{4}\\
    \left( P \right)\,\,\,\,di\,\,\,qua\,\,\,\,D\left( { – 1;\,\,6} \right)\\
    \Rightarrow 6 = a.1 – 1 – \frac{1}{4}\\
    \Rightarrow a = \frac{{29}}{4}.\\
    Vay\,\,\,\,a = \frac{{29}}{4},\,\,\,c = – \frac{1}{4}.
    \end{array}\]

    Bình luận

Viết một bình luận