1/căn(x+2)-căn (3-x)<=1/căn(5-2x) giải bpt này hộ mk vs ạ 12/07/2021 Bởi Isabelle 1/căn(x+2)-căn (3-x)<=1/căn(5-2x) giải bpt này hộ mk vs ạ
Đáp án: \[\left[ \begin{array}{l}x < \frac{1}{2}\\x \ge 2\end{array} \right.\] Giải thích các bước giải: ĐKXĐ: \(\left\{ \begin{array}{l}x + 2 \ge 0\\3 – x \ge 0\\5 – 2x \ge 0\\x + 2 \ne 3 – x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge – 2\\x \le 3\\x \le \frac{5}{2}\\x \ne \frac{1}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} – 2 \le x \le \frac{5}{2}\\x \ne \frac{1}{2}\end{array} \right.\) Ta có: \(\begin{array}{l}\frac{1}{{\sqrt {x + 2} – \sqrt {3 – x} }} \le \frac{1}{{\sqrt {5 – 2x} }}\\ \Leftrightarrow \left[ \begin{array}{l}\sqrt {x + 2} – \sqrt {3 – x} < 0\\\left\{ \begin{array}{l}\sqrt {x + 2} – \sqrt {3 – x} > 0\\\sqrt {x + 2} – \sqrt {3 – x} \ge \sqrt {5 – 2x} \end{array} \right.\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x + 2 < 3 – x\\\left\{ \begin{array}{l}x + 2 > 3 – x\\\sqrt {x + 2} \ge \sqrt {3 – x} + \sqrt {5 – 2x} \end{array} \right.\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x < \frac{1}{2}\\\left\{ \begin{array}{l}x > \frac{1}{2}\\x + 2 \ge 3 – x + 2\sqrt {\left( {3 – x} \right)\left( {5 – 2x} \right)} + 5 – 2x\end{array} \right.\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x < \frac{1}{2}\\\left\{ \begin{array}{l}x > \frac{1}{2}\\2x – 3 \ge \sqrt {\left( {3 – x} \right)\left( {5 – 2x} \right)} \end{array} \right.\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x < \frac{1}{2}\\\left\{ \begin{array}{l}x > \frac{1}{2}\\x \ge \frac{3}{2}\\4{x^2} – 12x + 9 \ge 2{x^2} – 11x + 15\end{array} \right.\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x < \frac{1}{2}\\\left\{ \begin{array}{l}x \ge \frac{3}{2}\\2{x^2} – x – 6 \ge 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x < \frac{1}{2}\\\left\{ \begin{array}{l}x \ge \frac{3}{2}\\\left[ \begin{array}{l}x \ge 2\\x \le – \frac{3}{2}\end{array} \right.\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x < \frac{1}{2}\\x \ge 2\end{array} \right.\end{array}\) Bình luận
Đáp án:
\[\left[ \begin{array}{l}
x < \frac{1}{2}\\
x \ge 2
\end{array} \right.\]
Giải thích các bước giải:
ĐKXĐ:
\(\left\{ \begin{array}{l}
x + 2 \ge 0\\
3 – x \ge 0\\
5 – 2x \ge 0\\
x + 2 \ne 3 – x
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ge – 2\\
x \le 3\\
x \le \frac{5}{2}\\
x \ne \frac{1}{2}
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
– 2 \le x \le \frac{5}{2}\\
x \ne \frac{1}{2}
\end{array} \right.\)
Ta có:
\(\begin{array}{l}
\frac{1}{{\sqrt {x + 2} – \sqrt {3 – x} }} \le \frac{1}{{\sqrt {5 – 2x} }}\\
\Leftrightarrow \left[ \begin{array}{l}
\sqrt {x + 2} – \sqrt {3 – x} < 0\\
\left\{ \begin{array}{l}
\sqrt {x + 2} – \sqrt {3 – x} > 0\\
\sqrt {x + 2} – \sqrt {3 – x} \ge \sqrt {5 – 2x}
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x + 2 < 3 – x\\
\left\{ \begin{array}{l}
x + 2 > 3 – x\\
\sqrt {x + 2} \ge \sqrt {3 – x} + \sqrt {5 – 2x}
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x < \frac{1}{2}\\
\left\{ \begin{array}{l}
x > \frac{1}{2}\\
x + 2 \ge 3 – x + 2\sqrt {\left( {3 – x} \right)\left( {5 – 2x} \right)} + 5 – 2x
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x < \frac{1}{2}\\
\left\{ \begin{array}{l}
x > \frac{1}{2}\\
2x – 3 \ge \sqrt {\left( {3 – x} \right)\left( {5 – 2x} \right)}
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x < \frac{1}{2}\\
\left\{ \begin{array}{l}
x > \frac{1}{2}\\
x \ge \frac{3}{2}\\
4{x^2} – 12x + 9 \ge 2{x^2} – 11x + 15
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x < \frac{1}{2}\\
\left\{ \begin{array}{l}
x \ge \frac{3}{2}\\
2{x^2} – x – 6 \ge 0
\end{array} \right.
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x < \frac{1}{2}\\
\left\{ \begin{array}{l}
x \ge \frac{3}{2}\\
\left[ \begin{array}{l}
x \ge 2\\
x \le – \frac{3}{2}
\end{array} \right.
\end{array} \right.
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x < \frac{1}{2}\\
x \ge 2
\end{array} \right.
\end{array}\)