$1/$ Cho $\dfrac{a}{b}$ $=$ $\dfrac{b}{c}$ $=$ $\dfrac{c}{a}$ $(a + b + c \neq$ $0$) CMR: $a = b = c$ $2/$ Cho $\dfrac{x}{y + z + t}$ $=$ $\dfrac{

$1/$ Cho $\dfrac{a}{b}$ $=$ $\dfrac{b}{c}$ $=$ $\dfrac{c}{a}$ $(a + b + c \neq$ $0$)
CMR: $a = b = c$
$2/$ Cho
$\dfrac{x}{y + z + t}$ $=$ $\dfrac{y}{z + t +x}$ $=$ $\dfrac{z}{t+x+y}$ $=$ $\dfrac{t}{x + y +z}$
Tính : $ $P$ $=$ $\dfrac{x+y}{z+t}$ $+$ $\dfrac{y +z}{t+x}$ $+$ $\dfrac{z+t}{x+y}$ + $\dfrac{t+x}{z+y}$
Thanks nhìu ạ!

0 bình luận về “$1/$ Cho $\dfrac{a}{b}$ $=$ $\dfrac{b}{c}$ $=$ $\dfrac{c}{a}$ $(a + b + c \neq$ $0$) CMR: $a = b = c$ $2/$ Cho $\dfrac{x}{y + z + t}$ $=$ $\dfrac{”

  1. Đáp án:

    Ta có:

    $\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}$

    Áp dụng tính chất dãy tỉ số bằng nhau:

    $\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1$

    ⇒$\dfrac{a}{b}=1⇒a=b$

    ⇒$\dfrac{c}{a}=1⇒a=c$

    ⇒$\dfrac{b}{c}=1⇒c=b$

    Vậy $a=b=c$ (đpcm)

    Bình luận

Viết một bình luận