1) Cho hai số `a,b≥0`,chứng minh :
`frac{a+b}{2} ≥sqrt{ab}`
*Dấu đẳng thức xảy ra khi nào ?
2)Với a dương , chứng minh :
`a+frac{1}{2}≥2`
$\text{*Khiên}$
1) Cho hai số `a,b≥0`,chứng minh :
`frac{a+b}{2} ≥sqrt{ab}`
*Dấu đẳng thức xảy ra khi nào ?
2)Với a dương , chứng minh :
`a+frac{1}{2}≥2`
$\text{*Khiên}$
1)
BPT tương đương:
$a+b\geq2\sqrt{ab}$
$⇔a+b-2\sqrt{ab}\geq0$
$⇔\left(\sqrt{a}-\sqrt{b}\right)²\geq0$
Dấu đẳng thức xảy ra khi $a=b$
2)
+) $(a-b)^2 ≥ 0$
$⇔ a^2 + 2ab + b^2 ≥ 4ab$
$⇔ (a+b)^2 ≥ 4ab$
$⇔ a+b ≥ 2\sqrt{ab}$
Áp dụng BĐT ta có:
$⇒ a+\dfrac{1}{a} \ge 2\sqrt{a.\dfrac{1}{a}}$
$⇔ a+\dfrac{1}{a} \ge 2$ (đpcm)
Dấu đẳng thức xảy ra khi $a=1$
———————————————
Cho $a$ và $b$ dương, chứng minh:
$\left(a+b\right)\left(1+ab\right)\ge4ab$
$⇔ \dfrac{\left(a+b\right)\left(1+ab\right)}{ab}\ge4$
$⇔ \left(ab+1\right).\dfrac{a+b}{ab}\ge4$
$⇔ \left(ab+1\right).\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4$
$⇔\begin{cases}ab+1\ge2\sqrt{ab}\\\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}\end{cases}$
$⇔\left(ab+1\right).\left(\dfrac{1}{a}+\dfrac{1}{b}\right)≥2\sqrt{ab}.2\sqrt{\dfrac{1}{ab}}$
$⇔\left(ab+1\right).\left(\dfrac{1}{a}+\dfrac{1}{b}\right)≥4\sqrt{ab.\dfrac{1}{ab}}$
$⇔\left(ab+1\right).\left(\dfrac{1}{a}+\dfrac{1}{b}\right)≥4$ (đpcm)
Đáp án:
Giải thích các bước giải:
1) `\frac{a+b}{2} \ge \sqrt{ab}`
`⇔ a+b \ge 2\sqrt{ab}`
`⇔ a-2\sqrt{ab}+b \ge 0`
`⇔ (\sqrt{a}-\sqrt{b})^2 \ge 0`
Vì `(\sqrt{a}-\sqrt{b}) \ge 0 \forall a,b`
Dấu `=` xảy ra khi và chỉ khi `\sqrt{a}-\sqrt{b}=0`
`⇔ a=b`
2) Cách 1:
Áp dụng bất đẳng thức Cauchy-Schwarz
`a+\frac{1}{a} \ge 2.\sqrt{a.\frac{1}{a}}=2`
`⇒` đpcm
Dấu `=` xảy ra khi và chỉ khi
`a=1`
Cách 2:
`a+\frac{1}{a} \ge 2`
`⇔ \frac{a^2+1}{a} \ge 2`
`⇔ a^2+1 \ge 2a`
`⇔ a^2-2a+1 \ge 0`
`⇔ (a-1)^2 \ge 0`
Vì `(a-1)^2 \ge 0 \forall a`
`⇒` đpcm
Dấu `=` xảy ra khi cà chỉ khi `a=1`