1. cho tan a =2 .tính sin 2a, cos2a,tan 2a 2. tính giá trị biểu thức: A=cos20 độ.cos40.cos60.cos80 B=sin10.sin50.sin70

1. cho tan a =2 .tính sin 2a, cos2a,tan 2a
2. tính giá trị biểu thức: A=cos20 độ.cos40.cos60.cos80
B=sin10.sin50.sin70

0 bình luận về “1. cho tan a =2 .tính sin 2a, cos2a,tan 2a 2. tính giá trị biểu thức: A=cos20 độ.cos40.cos60.cos80 B=sin10.sin50.sin70”

  1. Giải thích các bước giải:

    \(\begin{array}{l}
    1,\\
    \tan a = 2 \Leftrightarrow \dfrac{{\sin a}}{{\cos a}} = 2 \Leftrightarrow \sin a = 2\cos a\\
    {\sin ^2}a + {\cos ^2}a = 1\\
     \Leftrightarrow {\left( {2\cos a} \right)^2} + {\cos ^2}a = 1\\
     \Leftrightarrow {\cos ^2}a = \dfrac{1}{5}\\
    \sin 2a = 2\sin a.\cos a = 2.\cos a.\cos a = 2.{\cos ^2}a = \dfrac{2}{5}\\
    \cos 2a = 2{\cos ^2}a – 1 = 2.\dfrac{1}{5} – 1 =  – \dfrac{3}{5}\\
    \tan 2a = \dfrac{{\sin 2a}}{{\cos 2a}} =  – \dfrac{2}{3}\\
    2,\\
    A = \cos 20^\circ .\cos 40^\circ .\cos 60^\circ .\cos 80^\circ \\
     \Leftrightarrow A.\sin 20^\circ  = \sin 20^\circ .cos20^\circ .\cos 40^\circ .\dfrac{1}{2}.\cos 80^\circ \\
     \Leftrightarrow A.\sin 20^\circ  = \dfrac{1}{2}\sin 40^\circ .\cos 40^\circ .\dfrac{1}{2}.\cos 80^\circ \\
     \Leftrightarrow A.\sin 20^\circ  = \dfrac{1}{4}.\dfrac{1}{2}\sin 80^\circ .\cos 80^\circ \\
     \Leftrightarrow A.\sin 20^\circ  = \dfrac{1}{8}.\dfrac{1}{2}.sin160^\circ \\
     \Leftrightarrow A.\sin 20^\circ  = \dfrac{1}{{16}}.\sin \left( {180^\circ  – 160^\circ } \right)\\
     \Leftrightarrow A.\sin 20^\circ  = \dfrac{1}{{16}}.\sin 20^\circ \\
     \Leftrightarrow A = \dfrac{1}{{16}}
    \end{array}\)

    Bình luận

Viết một bình luận