1$.cos^{4}a-sin^{4}a=cos^{2}a-sin^{2}a$ $2.(sina+cosa)^{2}+(sina-cosa)^{2}=2$

1$.cos^{4}a-sin^{4}a=cos^{2}a-sin^{2}a$
$2.(sina+cosa)^{2}+(sina-cosa)^{2}=2$

0 bình luận về “1$.cos^{4}a-sin^{4}a=cos^{2}a-sin^{2}a$ $2.(sina+cosa)^{2}+(sina-cosa)^{2}=2$”

  1. 1) Ta có:

    $\cos^4a – \sin^4a$

    $= (\cos^2a + \sin^2a)(\cos^2a – \sin^2a)$

    $= 1.(\cos^2a – \sin^2a)$

    $= \cos^2a – \sin^2a$

    2) Ta có:

    $(\sin a + \cos a)^2 + (\sin a – \cos a)^2$

    $= \sin^2a + \cos^2a + 2\sin a\cos a + \sin^2a + \cos^2a – 2\sin a\cos a$

    $= (\sin^2a + \cos^2a) + (\sin^2a + \cos^2a) + (2\sin a\cos a – 2\sin a\cos a)$

    $= 1 + 1 + 0$

    $= 2$

    Bình luận

Viết một bình luận