1, giải các phương trình sau: a, √x^2-6x+9 = x b, x+ √ 4x^2-4x+1 =2 c, √ x+2 căn x+1 – √x-2 căn x +1 =2 d, √x+4 căn x+4 + √x-4 căn x +4 =4

1, giải các phương trình sau:
a, √x^2-6x+9 = x
b, x+ √ 4x^2-4x+1 =2
c, √ x+2 căn x+1 – √x-2 căn x +1 =2
d, √x+4 căn x+4 + √x-4 căn x +4 =4

0 bình luận về “1, giải các phương trình sau: a, √x^2-6x+9 = x b, x+ √ 4x^2-4x+1 =2 c, √ x+2 căn x+1 – √x-2 căn x +1 =2 d, √x+4 căn x+4 + √x-4 căn x +4 =4”

  1. \[\begin{array}{l}
    a)\,\,\sqrt {{x^2} – 6x + 9} = x \Leftrightarrow \sqrt {{{\left( {x – 3} \right)}^2}} = x\\
    \Leftrightarrow \left| {x – 3} \right| = x \Leftrightarrow \left[ \begin{array}{l}
    x – 3 = x\\
    x – 3 = – x
    \end{array} \right.\\
    \Leftrightarrow \left[ \begin{array}{l}
    – 3 = 0\,\,\left( {vo\,\,ly} \right)\\
    2x = 3
    \end{array} \right. \Leftrightarrow x = \frac{3}{2}.\\
    b)\,\,x + \sqrt {4{x^2} – 4x + 1} = 2 \Leftrightarrow \sqrt {{{\left( {2x – 1} \right)}^2}} = 2 – x\\
    \Leftrightarrow \left| {2x – 1} \right| = 2 – x \Leftrightarrow \left[ \begin{array}{l}
    2x – 1 = 2 – x\\
    2x – 1 = x – 2
    \end{array} \right.\\
    \Leftrightarrow \left[ \begin{array}{l}
    3x = 3\\
    x = – 1
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    x = 1\\
    x = – 1
    \end{array} \right..\\
    c)\,\,\,\sqrt {x + 2\sqrt x + 1} – \sqrt {x – 2\sqrt x + 1} = 2\,\,\,\left( {DK:\,\,\,x \ge 0} \right)\\
    \Leftrightarrow \sqrt {{{\left( {\sqrt x + 1} \right)}^2}} – \sqrt {{{\left( {\sqrt x + 1} \right)}^2}} = 1\\
    \Leftrightarrow \left| {\sqrt x + 1} \right| – \left| {\sqrt x – 1} \right| = 1 \Leftrightarrow \sqrt x + 1 – \left| {\sqrt x – 1} \right| = 1\\
    \Leftrightarrow \sqrt x = \left| {\sqrt x – 1} \right| \Leftrightarrow \left[ \begin{array}{l}
    \sqrt x = \sqrt x – 1\\
    \sqrt x = 1 – \sqrt x
    \end{array} \right.\\
    \Leftrightarrow \left[ \begin{array}{l}
    0 = – 1\,\,\,\left( {VN} \right)\\
    2\sqrt x = 1
    \end{array} \right. \Leftrightarrow \sqrt x = \frac{1}{2} \Leftrightarrow x = \frac{1}{4}\,\,\,\left( {tm} \right).\\
    d)\,\,\sqrt {x + 4\sqrt x + 4} + \sqrt {x – 4\sqrt x + 4} = 4\,\,\,\,\left( {DK:\,\,\,x \ge 0} \right)\\
    \Leftrightarrow \sqrt {{{\left( {\sqrt x + 2} \right)}^2}} + \sqrt {{{\left( {\sqrt x – 2} \right)}^2}} = 4\\
    \Leftrightarrow \left| {\sqrt x + 2} \right| + \left| {\sqrt x – 2} \right| = 4\\
    \Leftrightarrow \sqrt x + 2 + \left| {\sqrt x – 2} \right| = 4\\
    \Leftrightarrow \left| {\sqrt x – 2} \right| = 4 – \sqrt x – 2\\
    \Leftrightarrow \left| {\sqrt x – 2} \right| = 2 – \sqrt x \\
    \Leftrightarrow \left[ \begin{array}{l}
    \sqrt x – 2 = 2 – \sqrt x \\
    \sqrt x – 2 = \sqrt x – 2
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    2\sqrt x = 4\\
    \,\,\forall x \ge 0
    \end{array} \right.\\
    \Leftrightarrow \sqrt x = 2 \Leftrightarrow x = 4.\\
    Vay\,\,\,pt\,\,\,co\,\,nghiem\,\,voi\,\,moi\,\,x \ge 0.
    \end{array}\]

    Bình luận
  2. Đáp án:

    a. x=3/2
    b.x= $ \pm $1
    c.x=1
    d.$0 \le x \le 4$

    Giải thích các bước giải:

    a. $\sqrt {{x^2} – 6x + 9} = x$
    ĐKXĐ: $x \ge 0$
    pttt: $\sqrt {{{\left( {x – 3} \right)}^2}} = x$
    $\left| {x – 3} \right| = x$
    x-3=x hoặc x-3= -x
    0=3(vô lí) x=3/2 ( thỏa mãn ĐKXĐ )
    Vậy x=3/2
    b.
    $\eqalign{ & x + \sqrt {4{x^2} – 4x + 1} = 2 \cr
    & \sqrt {{{(2x – 1)}^2}} = 2 – x \cr} $
    $\left| {2x – 1} \right| = 2 – x$ ( với $x \le 2$ )
    khi 2x-1 $ \ge $0 $\eqalign{
    & 2x – 1 = 2 – x \cr
    & x = 1 \cr} $
    khi 2x-1<0 $\eqalign{
    & 2x - 1 = x - 2 \cr
    & x = - 1 \cr} $
    (thỏa mãn $x \le 2$)
    Vậy x= $ \pm $1
    c. ĐKXĐ x$ \ge $0
    $\eqalign{
    & \sqrt {x + 2\sqrt x + 1} - \sqrt {x - 2\sqrt x + 1} = 2 \cr
    & \sqrt {{{(\sqrt x + 1)}^2}} - \sqrt {{{(\sqrt x - 1)}^2}} = 2 \cr
    & \left| {\sqrt x + 1} \right| - \left| {\sqrt x - 1} \right| = 2 \cr
    & \sqrt x + 1 - \left| {\sqrt x - 1} \right| = 2 \cr
    & khi\sqrt x - 1 \ge 0 \cr
    & \sqrt x + 1 - \sqrt x - 1 = 2(L) \cr
    & khi\sqrt x - 1 < 0 \Leftrightarrow 0 \le x < 1 \cr & \sqrt x + 1 - 1 + \sqrt x = 2 \cr & 2\sqrt x = 2 \cr & x = 1 \cr} $ d.ĐKXĐ x$ \ge 0$ $\eqalign{ & \sqrt {x + 4\sqrt x + 4} + \sqrt {x - 4\sqrt x + 4} = 4 \cr & \sqrt {{{(\sqrt x + 2)}^2}} + \sqrt {{{(\sqrt x - 2)}^2}} = 4 \cr & \left| {\sqrt x + 2} \right| + \left| {\sqrt x - 2} \right| = 4 \cr & \sqrt x + 2 + \left| {\sqrt x - 2} \right| = 4 \cr & khi\sqrt x - 2 \ge 0 \Leftrightarrow x \ge 4 \cr & \sqrt x + 2 + \sqrt x - 2 = 4 \cr & 2\sqrt x = 4 \cr & x = 4(thoaman) \cr & khi\sqrt x - 2 < 0 \Leftrightarrow 0 \le x < 4 \cr & \sqrt x + 2 + 2 - \sqrt x = 4 \cr & 4 = 4 \cr} $ (luôn đúng) vậy $0 \le x \le 4$

    Bình luận

Viết một bình luận