1 hộp bi có 5 bi đỏ,6 bi xanh,7 bi vàng. Chọn ngẫu nhiên 4 viên bi: a, Tính xác suất để chọn đc 4 bi đủ 3 màu b, Tính xác suất đê chọn đc 4 bi có số

1 hộp bi có 5 bi đỏ,6 bi xanh,7 bi vàng. Chọn ngẫu nhiên 4 viên bi:
a, Tính xác suất để chọn đc 4 bi đủ 3 màu
b, Tính xác suất đê chọn đc 4 bi có số bi xanh bằng số bi đỏ.

0 bình luận về “1 hộp bi có 5 bi đỏ,6 bi xanh,7 bi vàng. Chọn ngẫu nhiên 4 viên bi: a, Tính xác suất để chọn đc 4 bi đủ 3 màu b, Tính xác suất đê chọn đc 4 bi có số”

  1. a) Số cách chọn 4 viên bi bất kỳ là

    $C_{18}^4 = 3060$

    TH1: 2 đỏ, 1 xanh, 1 vàng

    Số cách chọn đỏ là: $C_5^2 = 10$ cách

    Số cách chọn xanh là: $6$ cách

    Số cách chọn vàng là: $7$ cách

    Số cách trong trường hợp này là:

    $10.6.7 = 420$ cách

    TH2: 1 đỏ, 2 xanh, 1 vàng

    Số cách chọn đỏ là: $5$ cách

    Số cách chọn xanh là: $C_6^2 = 15$ cách

    Số cách chọn vàng là: $7$ cách

    Số cách trong trường hợp này là:

    $15.5.7 = 525$ cách

    TH3: 1 đỏ, 1 xanh, 2 vàng

    Số cách chọn đỏ là: $5$ cách

    Số cách chọn xanh là: $6$ cách

    Số cách chọn vàng là: $C_7^2 = 21$ cách

    Số cách trong trường hợp này là:

    $5.6.21 = 630$ cách

    Vậy xác suất là

    $\dfrac{420 + 525 + 630}{3060} = \dfrac{35}{68}$

    b) TH1: 0 đỏ và 0 xanh

    Do chỉ chọn màu vàng nên số cách là

    $C_7^4 = 35$ cách

    TH2: 1 đỏ và 1 xanh

    Khi đó sẽ có 2 vàng, là TH3 ở trên và có $630$ cách

    TH3: 2 đỏ và 2 xanh

    Số cách chọn đỏ là: $C_5^2 = 10$ cách

    Số cách chọn xanh là: $C_6^2 = 15$ cách

    Số cách trong trường hợp này là

    $15.10 = 150$ cách

    Vậy xác suất trong trường hợp này là

    $\dfrac{35 + 630 + 150}{3060} = \dfrac{163}{612}$

    Bình luận

Viết một bình luận