1 hộp đựng 9 thẻ đánh số từ 1 đến 9, rút 2 thẻ ngẫu nhiên và nhân 2 số ghi trên 2 thẻ với nhau. Tính xác suất để a) tích nhận đc là số lẻ b) tích nhậ

1 hộp đựng 9 thẻ đánh số từ 1 đến 9, rút 2 thẻ ngẫu nhiên và nhân 2 số ghi trên 2 thẻ với nhau. Tính xác suất để
a) tích nhận đc là số lẻ
b) tích nhận đc là số chẵn

0 bình luận về “1 hộp đựng 9 thẻ đánh số từ 1 đến 9, rút 2 thẻ ngẫu nhiên và nhân 2 số ghi trên 2 thẻ với nhau. Tính xác suất để a) tích nhận đc là số lẻ b) tích nhậ”

  1. Đáp án:

    a) \(\dfrac{5}{{18}}\)

    b) \(\dfrac{{13}}{{18}}\)

    Giải thích các bước giải:

    Chọn \(2\) trong \(9\) thẻ có \(C_9^2\) cách.

    a) Gọi biến cố \(A\):”Tích nhận được là số lẻ”.

    Khi đó 2 số cần chọn đều lẻ nên có \(C_5^2\) cách.

    Xác suất $P\left( A \right) = \dfrac{{C_5^2}}{{C_9^2}} = \dfrac{5}{{18}}$.

    b) Gọi biến cố \(B\):”Tích nhận được là số chẵn.”

    Khi đó hai số cần chọn có ít nhất 1 số chẵn.

    Biến cố đối $\overline B $: “Tích nhận được là số lẻ”.

    Theo câu a, $P\left( {\overline B } \right) = P\left( A \right) = \dfrac{5}{{18}} \Rightarrow P\left( B \right) = 1 – P\left( {\overline B } \right) = \dfrac{{13}}{{18}}$.

    Bình luận

Viết một bình luận