1. Một hộp chứa 4 quả cầu màu đỏ,5 quả cầu màu xanh và 7 quả cầu màu vàng. Lấy ngẫu nhiên cùng lúc ra 4 quả cầu từ hộp đó. Tính xác suất sao cho 4 quả

1. Một hộp chứa 4 quả cầu màu đỏ,5 quả cầu màu xanh và 7 quả cầu màu vàng. Lấy ngẫu nhiên cùng lúc ra 4 quả cầu từ hộp đó. Tính xác suất sao cho 4 quả cầu lấy ra có đúng một quả cầu màu đỏ và không quá hai quả cầu màu vàng.
2. Một đội ngũ giáo viên gồm 8 thầy dạy toán,5 cô dạy vật lý và 3 cô dạy hóa. Sở giáo dục cần chọn 4 người để chấm bài thi THPT quốc gia , tính xác suất trong 4 người được chọn phải có cô giáo và có đủ 3 bộ môn.

0 bình luận về “1. Một hộp chứa 4 quả cầu màu đỏ,5 quả cầu màu xanh và 7 quả cầu màu vàng. Lấy ngẫu nhiên cùng lúc ra 4 quả cầu từ hộp đó. Tính xác suất sao cho 4 quả”

  1. Đáp án:

    1. P(A)= $\dfrac{37}{91}$ 

    2. P(A)= $\dfrac{3}{7}$ 

    Giải thích các bước giải:

    1. Không gian mẫu: \(n(\Omega ) = C_{16}^4 = 1820\)

    Gọi A là xác suất để 4 quả lấy ra có đúng một quả màu đỏ và không quá hai quả cầu màu vàng

    Lấy ra 1 quả màu đỏ \(C_4^1\)=4

    Th1: Không có quả màu vàng

    $\Rightarrow $ 3 quả còn lại màu xanh $\Rightarrow $ có \(C_5^3\)=10 cách

    Th2: 1 quả màu vàng, 2 quả màu xanh

    $\Rightarrow $ có \(C_7^1\).\(C_5^2\)=70

    Th3: 2 quả màu vàng, 1 quả màu xanh

    $\Rightarrow $ có \(C_7^2\).\(C_5^1\)=105

    $\Rightarrow $ n(A)=4.(10+70+105)=740

    $\Rightarrow $ P(A)=$\dfrac{740}{1820}$= $\dfrac{37}{91}$ 

    2. Không gian mẫu: \(n(\Omega ) = C_{16}^4 = 1820\)

    Gọi A là biến cố để có giáo viên đủ 3 môn và có cô giáo

    Th1: 1 thầy toán, 1 cô lí, 2 cô hóa $\Rightarrow $ có \(C_8^1.C_5^1.C_3^2 = 120\) cách

    Th2: 1 thầy toán, 2 cô lí, 1 cô hóa $\Rightarrow $ có \(C_8^1.C_5^2.C_3^1 = 240\) cách

    Th3: 2 thầy toán, 1 cô lí, 1 cô hóa $\Rightarrow $ có \(C_8^2.C_5^1.C_3^1 = 420\) cách

    $\Rightarrow $ n(A)=120+240+420=780

    $\Rightarrow $ P(A)=$\dfrac{780}{1820}$= $\dfrac{3}{7}$ 

    Bình luận

Viết một bình luận