1) Phân tích đa thức thành nhân tử a) x^3 + x^2 +x b) 4x^2y – 5x^3y – 6xy^2 c) 15x^3y^3 – 5x^2y^3 + 20xy^2 d) 8x^3 (x-2) – x^2 + 2x 2) Tìm x a) x^2 –

1) Phân tích đa thức thành nhân tử
a) x^3 + x^2 +x
b) 4x^2y – 5x^3y – 6xy^2
c) 15x^3y^3 – 5x^2y^3 + 20xy^2
d) 8x^3 (x-2) – x^2 + 2x
2) Tìm x
a) x^2 – 3x =0
b) 2x (x-2) – (x-2) =0
c) (x-5)^2 – x+5 = 0

0 bình luận về “1) Phân tích đa thức thành nhân tử a) x^3 + x^2 +x b) 4x^2y – 5x^3y – 6xy^2 c) 15x^3y^3 – 5x^2y^3 + 20xy^2 d) 8x^3 (x-2) – x^2 + 2x 2) Tìm x a) x^2 –”

  1. `1)`

    `a) x^3 + x^2 +x`

    `=x(x^2+x+1).`

    `b) 4x^2y – 5x^3y – 6xy^2 `

    `= -xy(-4x+5x^2y+6y).`

    `c) 15x^3y^3 – 5x^2y^3 + 20xy^2`

    `=5xy^2(3x^2y-xy+4).`

    `d) 8x^3 (x-2) – x^2 + 2x`

    `=x[8x^2(x-2)-x+2]`

    `=x(8x^3-16x^2-x+2)`

    `=x(8x^3-16x^2-x+2)`

    `=x[ 8x^2(x-2)-(x-2)]`

    `=x(x-2)(8x^2-1).`

    `2)`

    `a) x^2 – 3x =0`

    `⇔x(x-3)=0`

    `⇒` \(\left[ \begin{array}{l}x=0\\x-3=0\end{array} \right.\) 

    `⇒` \(\left[ \begin{array}{l}x=0\\x=3\end{array} \right.\) 

    Vậy `x∈{0;3}.`

    `b) 2x (x-2) – (x-2) =0`

    `⇔(x-2)(2x-1)=0`

    `⇒` \(\left[ \begin{array}{l}x-2=0\\2x-1=0\end{array} \right.\) 

    `⇒` \(\left[ \begin{array}{l}x=2\\x=\dfrac{1}{2}\end{array} \right.\) 

    Vậy `x∈{2;1/2}.`

    `c) (x-5)^2 – x+5 = 0`

    `⇔(x-5)^2 – (x-5 )= 0`

    `⇔(x-5)(x-5-1)= 0`

    `⇔(x-5)(x-6)= 0`

    `⇒` \(\left[ \begin{array}{l}x-5=0\\x-6=0\end{array} \right.\) 

    `⇒` \(\left[ \begin{array}{l}x=5\\x=6\end{array} \right.\) 

    Vậy `x∈{5;6}.`

    Bình luận
  2. Đáp án:

     

    Giải thích các bước giải:

    $a,x^3+x^2+x=x(x^2+x+1)$

    $b,4x^2y-5x^3y-6xy^2=xy(4x-5x^2-6y)$

    $c,15x^3y^3-5x^2y^3+20xy^2=5xy^2(3x^2y-xy+4)$

    $d,8x^3(x-2)-x^2+2x$

    $=8x^3(x-2)-x(x-2)$

    $=(8x^3-x)(x-2)$

    2.

    $a,x^2-3x=0$

    $(=)x(x-3)=0$

    \(\left[ \begin{array}{l}x=0\\x-3=0\end{array} \right.\)

    =>\(\left[ \begin{array}{l}x=0\\x=3\end{array} \right.\) 

    $b,2x(x-2)-(x-2)=0$

    $(=)(2x-1)(x-2)=0$

    \(\left[ \begin{array}{l}2x-1=0\\x-2=0\end{array} \right.\)

    =>\(\left[ \begin{array}{l}x=\dfrac{1}{2}\\x=2\end{array} \right.\) 

    $c,(x-5)^2-x+5=0$

    $(=)x^2-10x+25-x+5=0$

    $(=)x^2-11x+30=0$

    $(=)(x-6)(x-5)=0$

    \(\left[ \begin{array}{l}x-6=0\\x-5=0\end{array} \right.\)

    =>\(\left[ \begin{array}{l}x=6\\x=5\end{array} \right.\) 

    Bình luận

Viết một bình luận