1,Q= 2x/ x+3 Tính Q khi x= -1/3 2,P= x+1/x-3+ 11x-3/x²-9 M= Q+P Rút gọn M 3, Tìm x thuộc Z để M thuộc Z 02/12/2021 Bởi Audrey 1,Q= 2x/ x+3 Tính Q khi x= -1/3 2,P= x+1/x-3+ 11x-3/x²-9 M= Q+P Rút gọn M 3, Tìm x thuộc Z để M thuộc Z
Đáp án: 2) \(\dfrac{{3x}}{{x – 3}}\) Giải thích các bước giải: \(\begin{array}{l}1)Thay:x = – \dfrac{1}{3}\\ \to Q = \dfrac{{2.\left( { – \dfrac{1}{3}} \right)}}{{ – \dfrac{1}{3} + 3}} = – \dfrac{1}{4}\\2)P = \dfrac{{x + 1}}{{x – 3}} + \dfrac{{11x – 3}}{{{x^2} – 9}} = \dfrac{{\left( {x + 1} \right)\left( {x + 3} \right) + 11x – 3}}{{\left( {x – 3} \right)\left( {x + 3} \right)}}\\ = \dfrac{{{x^2} + 4x + 3 + 11x – 3}}{{\left( {x – 3} \right)\left( {x + 3} \right)}}\\ = \dfrac{{{x^2} + 15x}}{{\left( {x – 3} \right)\left( {x + 3} \right)}}\\M = Q + P = \dfrac{{{x^2} + 15x}}{{\left( {x – 3} \right)\left( {x + 3} \right)}} + \dfrac{{2x}}{{x + 3}}\\ = \dfrac{{{x^2} + 15x + 2x\left( {x – 3} \right)}}{{\left( {x – 3} \right)\left( {x + 3} \right)}} = \dfrac{{{x^2} + 15x + 2{x^2} – 6x}}{{\left( {x – 3} \right)\left( {x + 3} \right)}}\\ = \dfrac{{3{x^2} + 9x}}{{\left( {x – 3} \right)\left( {x + 3} \right)}} = \dfrac{{3x}}{{x – 3}}\\3)M = \dfrac{{3x}}{{x – 3}} = \dfrac{{3\left( {x – 3} \right) + 9}}{{x – 3}} = 3 + \dfrac{9}{{x – 3}}\\M \in Z\\ \Leftrightarrow \dfrac{9}{{x – 3}} \in Z\\ \Leftrightarrow x – 3 \in U\left( 9 \right)\\ \to \left[ \begin{array}{l}x – 3 = 9\\x – 3 = – 9\\x – 3 = 3\\x – 3 = – 3\\x – 3 = 1\\x – 3 = – 1\end{array} \right. \to \left[ \begin{array}{l}x = 12\\x = – 6\\x = 6\\x = 0\\x = 4\\x = 2\end{array} \right.\end{array}\) Bình luận
Đáp án:
2) \(\dfrac{{3x}}{{x – 3}}\)
Giải thích các bước giải:
\(\begin{array}{l}
1)Thay:x = – \dfrac{1}{3}\\
\to Q = \dfrac{{2.\left( { – \dfrac{1}{3}} \right)}}{{ – \dfrac{1}{3} + 3}} = – \dfrac{1}{4}\\
2)P = \dfrac{{x + 1}}{{x – 3}} + \dfrac{{11x – 3}}{{{x^2} – 9}} = \dfrac{{\left( {x + 1} \right)\left( {x + 3} \right) + 11x – 3}}{{\left( {x – 3} \right)\left( {x + 3} \right)}}\\
= \dfrac{{{x^2} + 4x + 3 + 11x – 3}}{{\left( {x – 3} \right)\left( {x + 3} \right)}}\\
= \dfrac{{{x^2} + 15x}}{{\left( {x – 3} \right)\left( {x + 3} \right)}}\\
M = Q + P = \dfrac{{{x^2} + 15x}}{{\left( {x – 3} \right)\left( {x + 3} \right)}} + \dfrac{{2x}}{{x + 3}}\\
= \dfrac{{{x^2} + 15x + 2x\left( {x – 3} \right)}}{{\left( {x – 3} \right)\left( {x + 3} \right)}} = \dfrac{{{x^2} + 15x + 2{x^2} – 6x}}{{\left( {x – 3} \right)\left( {x + 3} \right)}}\\
= \dfrac{{3{x^2} + 9x}}{{\left( {x – 3} \right)\left( {x + 3} \right)}} = \dfrac{{3x}}{{x – 3}}\\
3)M = \dfrac{{3x}}{{x – 3}} = \dfrac{{3\left( {x – 3} \right) + 9}}{{x – 3}} = 3 + \dfrac{9}{{x – 3}}\\
M \in Z\\
\Leftrightarrow \dfrac{9}{{x – 3}} \in Z\\
\Leftrightarrow x – 3 \in U\left( 9 \right)\\
\to \left[ \begin{array}{l}
x – 3 = 9\\
x – 3 = – 9\\
x – 3 = 3\\
x – 3 = – 3\\
x – 3 = 1\\
x – 3 = – 1
\end{array} \right. \to \left[ \begin{array}{l}
x = 12\\
x = – 6\\
x = 6\\
x = 0\\
x = 4\\
x = 2
\end{array} \right.
\end{array}\)