1.Sin(2π/3 – 3x)= 0 2.sin(3x –π/6)=–1 3.sin(π/2 –x)=1 4.sin(x + 30°)=√3/2 5.sin(3x – π/4)=Cosx Mn giúp e vs ạ

1.Sin(2π/3 – 3x)= 0
2.sin(3x –π/6)=–1
3.sin(π/2 –x)=1
4.sin(x + 30°)=√3/2
5.sin(3x – π/4)=Cosx
Mn giúp e vs ạ

0 bình luận về “1.Sin(2π/3 – 3x)= 0 2.sin(3x –π/6)=–1 3.sin(π/2 –x)=1 4.sin(x + 30°)=√3/2 5.sin(3x – π/4)=Cosx Mn giúp e vs ạ”

  1. Đáp án:

     5) \(\left[ \begin{array}{l}
    x = \dfrac{{3\pi }}{{16}} + \dfrac{{k\pi }}{2}\\
    x = \dfrac{{3\pi }}{8} + k\pi 
    \end{array} \right.\)

    Giải thích các bước giải:

    \(\begin{array}{l}
    1)\sin \left( { – 3x + \dfrac{{2\pi }}{3}} \right) = 0\\
     \to  – 3x + \dfrac{{2\pi }}{3} = k\pi \\
     \to 3x = \dfrac{{2\pi }}{3} + k\pi \\
     \to x = \dfrac{{2\pi }}{9} + \dfrac{{k\pi }}{3}\left( {k \in Z} \right)\\
    2)\sin \left( {3x – \dfrac{\pi }{6}} \right) =  – 1\\
     \to 3x – \dfrac{\pi }{6} =  – \dfrac{\pi }{2} + k2\pi \\
     \to 3x =  – \dfrac{\pi }{3} + k2\pi \\
     \to x =  – \dfrac{\pi }{9} + \dfrac{{k2\pi }}{3}\left( {k \in Z} \right)\\
    3)\sin \left( { – x + \dfrac{\pi }{2}} \right) = 1\\
     \to  – x + \dfrac{\pi }{2} = \dfrac{\pi }{2} + k2\pi \\
     \to x = k2\pi \left( {k \in Z} \right)\\
    4)\sin \left( {x + \dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 3 }}{2}\\
     \to \left[ \begin{array}{l}
    x + \dfrac{\pi }{6} = \dfrac{\pi }{3} + k2\pi \\
    x + \dfrac{\pi }{6} = \pi  – \dfrac{\pi }{3} + k2\pi 
    \end{array} \right.\\
     \to \left[ \begin{array}{l}
    x = \dfrac{\pi }{6} + k2\pi \\
    x = \dfrac{\pi }{2} + k2\pi 
    \end{array} \right.\left( {k \in Z} \right)\\
    5)\sin \left( {3x – \dfrac{\pi }{4}} \right) = \cos x\\
     \to \sin \left( {3x – \dfrac{\pi }{4}} \right) = \sin \left( {\dfrac{\pi }{2} – x} \right)\\
     \to \left[ \begin{array}{l}
    3x – \dfrac{\pi }{4} = \dfrac{\pi }{2} – x + k2\pi \\
    3x – \dfrac{\pi }{4} = \pi  – \dfrac{\pi }{2} + x + k2\pi 
    \end{array} \right.\\
     \to \left[ \begin{array}{l}
    x = \dfrac{{3\pi }}{{16}} + \dfrac{{k\pi }}{2}\\
    x = \dfrac{{3\pi }}{8} + k\pi 
    \end{array} \right.\left( {k \in Z} \right)
    \end{array}\)

    Bình luận

Viết một bình luận