1/ So sánh -0,333 và -1/3 2 5^x+1+5^x+2=750 17/07/2021 Bởi Samantha 1/ So sánh -0,333 và -1/3 2 5^x+1+5^x+2=750
1/ -1/3= -0,(3) < -0,333 2/ $5^{x+1}$ + $5^{x+2}$ = $750$ <=> $5^x. 5^1$ + $5^x. 5^2$= $750$ <=> $5^x. (5^1+ 5^2)$= $750$ <=> $5^x. 30$= $750$ <=> $5^x$= $25$= $5^2$ <=> $x= 2$ Bình luận
1) Ta có: $\frac{-1}{3}=-0,(3)$ Mà $-0,(3)>-0,333$ ⇒ $-0,333<\frac{-1}{3}$ 2) $5^{x+1}+5^{x+2}=750$ $5^x.5^1+5^x+5^2=750$ $5^x(5^1+5^2)=750$ $5^x(5+25)=750$ $5^x.30=750$ $5^x=25$ $5^x=5^2$ Suy ra $x=2$ Vậy $x=2$ Bình luận
1/
-1/3= -0,(3) < -0,333
2/
$5^{x+1}$ + $5^{x+2}$ = $750$
<=> $5^x. 5^1$ + $5^x. 5^2$= $750$
<=> $5^x. (5^1+ 5^2)$= $750$
<=> $5^x. 30$= $750$
<=> $5^x$= $25$= $5^2$
<=> $x= 2$
1) Ta có: $\frac{-1}{3}=-0,(3)$
Mà $-0,(3)>-0,333$
⇒ $-0,333<\frac{-1}{3}$
2) $5^{x+1}+5^{x+2}=750$
$5^x.5^1+5^x+5^2=750$
$5^x(5^1+5^2)=750$
$5^x(5+25)=750$
$5^x.30=750$
$5^x=25$
$5^x=5^2$
Suy ra $x=2$
Vậy $x=2$