1) so sánh a) A=2^18-3/2^20-3 B=2^20-3/2^22-3 b)A=2013^2010+1/2013^2011+1 B=2013^2011-2/2013^2012-2

1) so sánh
a) A=2^18-3/2^20-3
B=2^20-3/2^22-3
b)A=2013^2010+1/2013^2011+1
B=2013^2011-2/2013^2012-2

0 bình luận về “1) so sánh a) A=2^18-3/2^20-3 B=2^20-3/2^22-3 b)A=2013^2010+1/2013^2011+1 B=2013^2011-2/2013^2012-2”

  1. $1$. Ta có:

    $a$) $A = \dfrac{2^{18}-3}{2^{20}-3}$

    $2^2A = \dfrac{2^{20} – 4.3}{2^{20}-3}$

    $4A = \dfrac{2^{20} – 12}{2^{20}-3}$

    $4A = \dfrac{2^{20} – 3 – 9}{2^{20} – 3}$

    $4A = 1 – \dfrac{9}{2^{20}-3}$

    $B = \dfrac{2^{20}-3}{2^{22}-3}$

    $2^2B = \dfrac{2^{22} – 4.3}{2^{22}-3}$

    $4B = \dfrac{2^{22} – 12}{2^{22}-3}$

    $4B = \dfrac{2^{22} – 3 – 9}{2^{22} – 3}$

    $4B = 1 – \dfrac{9}{2^{22}-3}$

    Vì $\dfrac{9}{2^{22}-3} < \dfrac{9}{2^{20}-3}$

    $⇒$ $B > A$

    $b$) $A = \dfrac{2013^{2010} +1}{2013^{2011} +1}$

    $2013A = \dfrac{2013^{2011} + 2013}{2013^{2011}+1}$

    $2013A = 1 + \dfrac{2013}{2013^{2011} + 1}$

    $B = \dfrac{2013^{2011} -2}{2013^{2012} -2}$

    $2013B = \dfrac{2013^{2012} – 4026}{2013^{2012}-2}$

    $2013B = \dfrac{2013^{2012} – 2 – 4024}{2013^{2012}-2}$

    $2013B = 1 – \dfrac{4024}{2013^{2012} -2}$

     Vì $1 – \dfrac{4024}{2013^{2012} -2} < 1 + \dfrac{2013}{2013^{2011} + 1}$

    $⇒B < A$

    Bình luận

Viết một bình luận