(1/$\sqrt{a}$+1-1/a$\sqrt{a})*$\sqrt{a}-1/a+2$\sqrt{a}+1

(1/$\sqrt{a}$+1-1/a$\sqrt{a})*$\sqrt{a}-1/a+2$\sqrt{a}+1

0 bình luận về “(1/$\sqrt{a}$+1-1/a$\sqrt{a})*$\sqrt{a}-1/a+2$\sqrt{a}+1”

  1. \(\begin{array}{l} (\frac{1}{{\sqrt a + 1}} – \frac{1}{{a\sqrt a }})(\frac{{\sqrt a – 1}}{{a + 2\sqrt a + 1}})\\ = \frac{{a\sqrt a – \sqrt a – 1}}{{a\sqrt a (\sqrt a + 1)}}.\frac{{\sqrt a – 1}}{{{{(\sqrt a + 1)}^2}}}\\ = \frac{{{a^2} – a\sqrt a – a + \sqrt a – \sqrt a + 1}}{{a\sqrt a {{(\sqrt a + 1)}^3}}}\\ = \frac{{{a^2} – a\sqrt a – a + 1}}{{a\sqrt a {{(\sqrt a + 1)}^3}}}\\ = \frac{{a\sqrt a (\sqrt a – 1) – (\sqrt a – 1)(\sqrt a + 1)}}{{a\sqrt a {{(\sqrt a + 1)}^3}}}\\ = \frac{{(a\sqrt a – \sqrt a – 1)(\sqrt a – 1)}}{{a\sqrt a {{(\sqrt a + 1)}^3}}} \end{array}\)

    Bình luận
  2. \(\begin{array}{l}
    (\frac{1}{{\sqrt a + 1}} – \frac{1}{{a\sqrt a }})(\frac{{\sqrt a – 1}}{{a + 2\sqrt a + 1}})\\
    = \frac{{a\sqrt a – \sqrt a – 1}}{{a\sqrt a (\sqrt a + 1)}}.\frac{{\sqrt a – 1}}{{{{(\sqrt a + 1)}^2}}}\\
    = \frac{{{a^2} – a\sqrt a – a + \sqrt a – \sqrt a + 1}}{{a\sqrt a {{(\sqrt a + 1)}^3}}}\\
    = \frac{{{a^2} – a\sqrt a – a + 1}}{{a\sqrt a {{(\sqrt a + 1)}^3}}}\\
    = \frac{{a\sqrt a (\sqrt a – 1) – (\sqrt a – 1)(\sqrt a + 1)}}{{a\sqrt a {{(\sqrt a + 1)}^3}}}\\
    = \frac{{(a\sqrt a – \sqrt a – 1)(\sqrt a – 1)}}{{a\sqrt a {{(\sqrt a + 1)}^3}}}
    \end{array}\)

    Bình luận

Viết một bình luận