1. Thực hiên phép tính (nếu hợp lí) a) (-0,25) . $\frac{4}{7}$ . (-3 $\frac{5}{21}$ ). ($\frac{-7}{23}$ ) b) ($\frac{-2}{5}$) . $\frac{4}{15}$ +

1. Thực hiên phép tính (nếu hợp lí)
a) (-0,25) . $\frac{4}{7}$ . (-3 $\frac{5}{21}$ ). ($\frac{-7}{23}$ )
b) ($\frac{-2}{5}$) . $\frac{4}{15}$ + $\frac{-3}{10}$ . $\frac{4}{15}$
c) 21- 3 $\frac{3}{4}$ : ($\frac{3}{8}$ – $\frac{1}{6}$)
d) ($\frac{-5}{6}$ + $\frac{2}{5}$) : $\frac{3}{8}$ + ( $\frac{4}{5}$ – $\frac{11}30y}$) : $\frac{3}{8}$
2 Tìm x:
a) $\frac{-2}{5}$ + $\frac{5}{2}$ x = $\frac{3}{10}$
b) $\frac{2}{3}$+ $\frac{7}{4}$ : x =$\frac{5}{6}$
c) ( -x +$\frac{5}{3}$ : (x- $\frac{5}{4}$ ) = 0
d) $\frac{1}{3}$ x – $\frac{8}{13}$) . (2,5 + $\frac{-7}{5}$ : x) = 0

0 bình luận về “1. Thực hiên phép tính (nếu hợp lí) a) (-0,25) . $\frac{4}{7}$ . (-3 $\frac{5}{21}$ ). ($\frac{-7}{23}$ ) b) ($\frac{-2}{5}$) . $\frac{4}{15}$ +”

  1. Đáp án:

     $1)
    a) \dfrac{-68}{483}\\
    b)\dfrac{-14}{75}\\
    c)
    3\\
    d)
    \dfrac{-13}{18}\\
    2)
    a)x=\dfrac{7}{25}\\
    b)
     x=\dfrac{21}{2}\\
    c)
     {\left[\begin{aligned}x=\dfrac{5}{3}\\x=\dfrac{5}{4}\end{aligned}\right.}\\
    d)
    {\left[\begin{aligned}x=\dfrac{24}{13}\\x =\dfrac{14}{25}\end{aligned}\right.}\\$

    Giải thích các bước giải:

     $1)
    a) (-0,25).\dfrac{4}{7}.\left ( -3\dfrac{5}{21} \right ).\left ( -\dfrac{7}{23} \right )\\
    =\dfrac{-1}{4}.\dfrac{4}{7}.\dfrac{-68}{21}.\dfrac{-7}{23}\\
    =-\dfrac{1}{7}.\dfrac{-7}{23}.\dfrac{-68}{21}\\
    =\dfrac{-68}{483}\\
    b) \left ( -\dfrac{2}{5} \right ).\dfrac{4}{15}+\dfrac{-3}{10}.\dfrac{4}{15}\\
    =\dfrac{4}{15}.\left ( \dfrac{-2}{5}-\dfrac{3}{10} \right )\\
    =\dfrac{4}{15}.\left ( \dfrac{-4}{10}-\dfrac{3}{10} \right )\\
    =\dfrac{4}{15}.\dfrac{-7}{10}\\
    =\dfrac{-14}{75}\\
    c)
    21-3\dfrac{3}{4}:\left ( \dfrac{3}{8}-\dfrac{1}{6} \right )\\
    =21-3\dfrac{3}{4}:\left ( \dfrac{9}{24}-\dfrac{4}{24} \right )\\
    =21-\dfrac{15}{4}:\dfrac{5}{24}\\
    =21-\dfrac{15}{4}.\dfrac{24}{5}\\
    =21-18\\
    =3\\
    d)
    \left ( -\dfrac{5}{6}+\dfrac{2}{5} \right ):\dfrac{3}{8}+\left ( \dfrac{4}{5}-\dfrac{11}{30} \right )\\
    =\left ( -\dfrac{25}{30}+\dfrac{12}{30} \right ):\dfrac{3}{8}+\left ( \dfrac{24}{30}-\dfrac{11}{30} \right )\\
    =\dfrac{-13}{30}.\dfrac{8}{3}+\dfrac{13}{30}\\
    =\dfrac{13}{30}.\left ( \dfrac{-8}{3}+1 \right )\\
    =\dfrac{13}{30}.\left ( \dfrac{-8}{3}+\dfrac{3}{3} \right )\\
    =\dfrac{13}{30}.\dfrac{-5}{3}\\
    =\dfrac{-13}{18}\\
    2)
    a) \dfrac{-2}{5}+\dfrac{5}{2}x=\dfrac{3}{10}\\
    \Leftrightarrow \dfrac{5}{2}x=\dfrac{3}{10}+\dfrac{2}{5}\\
    \Leftrightarrow \dfrac{5}{2}x=\dfrac{3}{10}+\dfrac{4}{10}\\
    \Leftrightarrow \dfrac{5}{2}x=\dfrac{7}{10}\\
    \Leftrightarrow x=\dfrac{7}{10}.\dfrac{2}{5}=\dfrac{7}{25}\\
    b)
    \dfrac{2}{3}+\dfrac{7}{4}:x=\dfrac{5}{6}\\
    \Leftrightarrow \dfrac{7}{4}:x=\dfrac{5}{6}-\dfrac{2}{3}\\
    \Leftrightarrow \dfrac{7}{4}:x=\dfrac{5}{6}-\dfrac{4}{6}\\
    \Leftrightarrow \dfrac{7}{4}.\dfrac{1}{x}=\dfrac{1}{6}\\
    \Leftrightarrow \dfrac{1}{x}=\dfrac{1}{6}.\dfrac{4}{7}=\dfrac{2}{21}\\
    \Leftrightarrow x=\dfrac{21}{2}\\
    c)
    \left ( -x+\dfrac{5}{3} \right ).\left ( x-\dfrac{5}{4} \right )=0\\
    \Leftrightarrow {\left[\begin{aligned}-x+\dfrac{5}{3}=0\\x-\dfrac{5}{4}=0\end{aligned}\right.}\\
    \Leftrightarrow {\left[\begin{aligned}x=\dfrac{5}{3}\\x=\dfrac{5}{4}\end{aligned}\right.}\\
    d)
    \left (\dfrac{1}{3}x-\dfrac{8}{13}  \right ).\left ( 2,5+\dfrac{-7}{5}:x \right )=0\\
    \Leftrightarrow {\left[\begin{aligned}\dfrac{1}{3}x-\dfrac{8}{13}=0\\2,5+\dfrac{-7}{5}:x =0\end{aligned}\right.}\\
    \Leftrightarrow {\left[\begin{aligned}\dfrac{1}{3}x=\dfrac{8}{13}\\\dfrac{7}{5}:x =\dfrac{5}{2}\end{aligned}\right.}\\
    \Leftrightarrow {\left[\begin{aligned}x=\dfrac{24}{13}\\\dfrac{1}{x} =\dfrac{5}{2}.\dfrac{5}{7}\end{aligned}\right.}\\
    \Leftrightarrow {\left[\begin{aligned}x=\dfrac{24}{13}\\\dfrac{1}{x} =\dfrac{25}{14}\end{aligned}\right.}\\
    \Leftrightarrow {\left[\begin{aligned}x=\dfrac{24}{13}\\x =\dfrac{14}{25}\end{aligned}\right.}\\$

    Bình luận

Viết một bình luận