1.Tìm x biết a) (√2x-1)+1=2x b) ( √ 3x-2)+4 ≤6x 14/08/2021 Bởi Gabriella 1.Tìm x biết a) (√2x-1)+1=2x b) ( √ 3x-2)+4 ≤6x
Đáp án: ở dưới Giải thích các bước giải: $a)⇔√2x-1 = 2x-1$ $⇔√2x-1 . (1-√2x-1)=0$ $⇔2x-1=0$ hay $1-√2x-1=0$ $⇔x=1/2$ hay $x =1$ $b)⇔√3x-2-(6x-4)=0$ $⇔√3x-2 . ( 1-2√3x-2)=0$ $⇔3x-2=0$ hay $3x-2 =1$ $⇔x=2/3$ hay $x=1$ Bình luận
Giải thích các bước giải: a) `sqrt(2x-1)+1=2x` `=>sqrt(2x-1)-(2x-1)=0` `=>sqrt(2x-1).(1-sqrt(2x-1))=0` `=>`\(\left[ \begin{array}{l}2x-1=0\\2x-1=1\end{array} \right.\) `=>`\(\left[ \begin{array}{l}2x=0\\2x=1\end{array} \right.\) `=>`\(\left[ \begin{array}{l}x=0\\x=\dfrac12\end{array} \right.\) Vậy `x in {0;1/2}.` b) `sqrt(3x-2)+4 =6x` `=>sqrt(3x-2)-(6x-4)=0` `=>sqrt(3x-2)-2(3x-2)=0` `=>sqrt(3x-2).(1-2sqrt(3x-2))=0` `=>`\(\left[ \begin{array}{l}3x-2=0\\3x-2=1\end{array} \right.\) `=>`\(\left[ \begin{array}{l}3x=2\\3x=3\end{array} \right.\) `=>`\(\left[ \begin{array}{l}x=\dfrac23\\x=1\end{array} \right.\) Vậy `x in {1;2/3}.` Bình luận
Đáp án:
ở dưới
Giải thích các bước giải:
$a)⇔√2x-1 = 2x-1$
$⇔√2x-1 . (1-√2x-1)=0$
$⇔2x-1=0$ hay $1-√2x-1=0$
$⇔x=1/2$ hay $x =1$
$b)⇔√3x-2-(6x-4)=0$
$⇔√3x-2 . ( 1-2√3x-2)=0$
$⇔3x-2=0$ hay $3x-2 =1$
$⇔x=2/3$ hay $x=1$
Giải thích các bước giải:
a) `sqrt(2x-1)+1=2x`
`=>sqrt(2x-1)-(2x-1)=0`
`=>sqrt(2x-1).(1-sqrt(2x-1))=0`
`=>`\(\left[ \begin{array}{l}2x-1=0\\2x-1=1\end{array} \right.\) `=>`\(\left[ \begin{array}{l}2x=0\\2x=1\end{array} \right.\) `=>`\(\left[ \begin{array}{l}x=0\\x=\dfrac12\end{array} \right.\)
Vậy `x in {0;1/2}.`
b) `sqrt(3x-2)+4 =6x`
`=>sqrt(3x-2)-(6x-4)=0`
`=>sqrt(3x-2)-2(3x-2)=0`
`=>sqrt(3x-2).(1-2sqrt(3x-2))=0`
`=>`\(\left[ \begin{array}{l}3x-2=0\\3x-2=1\end{array} \right.\) `=>`\(\left[ \begin{array}{l}3x=2\\3x=3\end{array} \right.\) `=>`\(\left[ \begin{array}{l}x=\dfrac23\\x=1\end{array} \right.\)
Vậy `x in {1;2/3}.`