1. Tìm lim [1 / (5n+2)] 2. Tìm lim (2018/n) 05/11/2021 Bởi Julia 1. Tìm lim [1 / (5n+2)] 2. Tìm lim (2018/n)
1. $\lim\dfrac{1}{5n+2}=\lim\dfrac{1}{n}(\dfrac{1}{5+\dfrac{2}{n}})=0.\dfrac{1}{5}=0$ 2. $\lim\dfrac{2018}{n}=\lim2018.\dfrac{1}{n}=0$ Bình luận
1. $\lim\dfrac{1}{5n+2}$ $=\lim\dfrac{ \dfrac{1}{n}}{5+\dfrac{2}{n}}$ $=\dfrac{0}{5+0}$ $=0$ 2. $\lim\dfrac{2018}{n}$ $=2018\lim\dfrac{1}{n}$ $=2018.0$ $=0$ Bình luận
1.
$\lim\dfrac{1}{5n+2}=\lim\dfrac{1}{n}(\dfrac{1}{5+\dfrac{2}{n}})=0.\dfrac{1}{5}=0$
2.
$\lim\dfrac{2018}{n}=\lim2018.\dfrac{1}{n}=0$
1.
$\lim\dfrac{1}{5n+2}$
$=\lim\dfrac{ \dfrac{1}{n}}{5+\dfrac{2}{n}}$
$=\dfrac{0}{5+0}$
$=0$
2.
$\lim\dfrac{2018}{n}$
$=2018\lim\dfrac{1}{n}$
$=2018.0$
$=0$