1. Tìm lim (1 – n^2) / (2n^2 + 1) 2. Tìm lim (4n + 2018) / (2n + 1)

1. Tìm lim (1 – n^2) / (2n^2 + 1)
2. Tìm lim (4n + 2018) / (2n + 1)

0 bình luận về “1. Tìm lim (1 – n^2) / (2n^2 + 1) 2. Tìm lim (4n + 2018) / (2n + 1)”

  1. Đáp án:

    $\begin{array}{l}
    1)\lim \dfrac{{1 – {n^2}}}{{2{n^2} + 1}} = \lim \dfrac{{\dfrac{1}{{{n^2}}} – 1}}{{2 + \dfrac{1}{{{n^2}}}}} = \dfrac{{ – 1}}{2}\\
    2)\lim \dfrac{{4n + 2018}}{{2n + 1}} = \lim \dfrac{{4 + \dfrac{{2018}}{n}}}{{2 + \dfrac{1}{n}}} = \dfrac{4}{2} = 2
    \end{array}$

    Bình luận
  2. 1.

    $\lim\dfrac{1-n^2}{2n^2+1}$

    $=\lim\dfrac{\dfrac{1}{n^2}-1}{2+\dfrac{1}{n^2}}$

    $=\dfrac{-1}{2}$

    2.

    $\lim\dfrac{4n+2018}{2n+1}$

    $=\lim\dfrac{4+\dfrac{2018}{n}}{2+\dfrac{1}{n}}$

    $=\dfrac{4}{2}=2$

    Bình luận

Viết một bình luận