1. Tìm lim (2n + 207) / (3n + 2018) 2. Tìm lim (1 + 19n) / (18n + 19) 05/11/2021 Bởi Camila 1. Tìm lim (2n + 207) / (3n + 2018) 2. Tìm lim (1 + 19n) / (18n + 19)
1. $\lim\dfrac{2n+207}{3n+2018}$ $=\lim\dfrac{2+\dfrac{207}{n}}{3+\dfrac{2018}{n}}$ $=\dfrac{2}{3}$ 2. $\lim\dfrac{1+19n}{18n+19}$ $=\lim\dfrac{\dfrac{1}{n}+19}{18+\dfrac{19}{n}}$ $=\dfrac{19}{18}$ Bình luận
1. lim$\frac{2n + 207}{3n + 2018}$ = lim$\frac{n(2 + \frac{207}{n})}{n(3 + \frac{2018}{n})}$ = lim$\frac{2 + \frac{207}{n}}{3 + \frac{2018}{n}}$ = $\frac{2}{3}$ 2. lim$\frac{1 + 19n}{18n + 19}$ = lim$\frac{n(19 + \frac{1}{n})}{n(18 + \frac{19}{n})}$ = lim$\frac{19 + \frac{1}{n}}{18 + \frac{19}{n}}$ = $\frac{19}{18}$ Bình luận
1.
$\lim\dfrac{2n+207}{3n+2018}$
$=\lim\dfrac{2+\dfrac{207}{n}}{3+\dfrac{2018}{n}}$
$=\dfrac{2}{3}$
2.
$\lim\dfrac{1+19n}{18n+19}$
$=\lim\dfrac{\dfrac{1}{n}+19}{18+\dfrac{19}{n}}$
$=\dfrac{19}{18}$
1. lim$\frac{2n + 207}{3n + 2018}$
= lim$\frac{n(2 + \frac{207}{n})}{n(3 + \frac{2018}{n})}$
= lim$\frac{2 + \frac{207}{n}}{3 + \frac{2018}{n}}$
= $\frac{2}{3}$
2. lim$\frac{1 + 19n}{18n + 19}$
= lim$\frac{n(19 + \frac{1}{n})}{n(18 + \frac{19}{n})}$
= lim$\frac{19 + \frac{1}{n}}{18 + \frac{19}{n}}$
= $\frac{19}{18}$