1. Tìm lim [căn(4n^2 + 1) – căn(n + 2)] / (2n-3) 2. Tìm lim [căn(4n^2 + 5) + n] / [4n – căn(n^2+1)] 04/11/2021 Bởi Claire 1. Tìm lim [căn(4n^2 + 1) – căn(n + 2)] / (2n-3) 2. Tìm lim [căn(4n^2 + 5) + n] / [4n – căn(n^2+1)]
1. `lim [sqrt(4n^2 + 1) – sqrt(n + 2)] / (2n-3)` `=lim [sqrt(4n^2 + 1/n^2) – sqrt(1/n + 2/n^2)] / (2-3/n)` `=2/2` `=1` 2. `lim [sqrt(4n^2 + 5) + n] / [4n – sqrt(n^2+1)]` `=lim(sqrt(4+5/n^2)+1)/(4-sqrt(1+1/n))` `=lim(sqrt4+1)/(4-sqrt1)` `=3/3` `=1` Bình luận
`1.)` `lim\frac{\sqrt{4n^2+1}-\sqrt{n+2}}{2n-3}=lim\frac{\sqrt{4n^2+\frac{1}{n^2}}-\sqrt{\frac{1}{n}+\frac{2}{n^2}}}{2-\frac{3}{n}}=2/2=1` `2.)` `lim\frac{\sqrt{4n^2+5}+n}{4-\sqrt{n^2+1}}` `=lim\frac{\sqrt{4+\frac{5}{n^2}+1}}{4-\sqrt{1+\frac{1}{n}}}=lim\frac{\sqrt{4}+1}{4-\sqrt{1}}=3/3=1` `text{Chúc bạn học tốt !}` Bình luận
1.
`lim [sqrt(4n^2 + 1) – sqrt(n + 2)] / (2n-3)`
`=lim [sqrt(4n^2 + 1/n^2) – sqrt(1/n + 2/n^2)] / (2-3/n)`
`=2/2`
`=1`
2.
`lim [sqrt(4n^2 + 5) + n] / [4n – sqrt(n^2+1)]`
`=lim(sqrt(4+5/n^2)+1)/(4-sqrt(1+1/n))`
`=lim(sqrt4+1)/(4-sqrt1)`
`=3/3`
`=1`
`1.)`
`lim\frac{\sqrt{4n^2+1}-\sqrt{n+2}}{2n-3}=lim\frac{\sqrt{4n^2+\frac{1}{n^2}}-\sqrt{\frac{1}{n}+\frac{2}{n^2}}}{2-\frac{3}{n}}=2/2=1`
`2.)`
`lim\frac{\sqrt{4n^2+5}+n}{4-\sqrt{n^2+1}}`
`=lim\frac{\sqrt{4+\frac{5}{n^2}+1}}{4-\sqrt{1+\frac{1}{n}}}=lim\frac{\sqrt{4}+1}{4-\sqrt{1}}=3/3=1`
`text{Chúc bạn học tốt !}`