1. Tìm lim (n^3 – 2n) / (3n^2 + n – 2) 2. Tìm lim (-2 + 3n – 2n^3) / (3n – 2)

1. Tìm lim (n^3 – 2n) / (3n^2 + n – 2)
2. Tìm lim (-2 + 3n – 2n^3) / (3n – 2)

0 bình luận về “1. Tìm lim (n^3 – 2n) / (3n^2 + n – 2) 2. Tìm lim (-2 + 3n – 2n^3) / (3n – 2)”

  1. 1.

    $\lim\dfrac{n^3-2n}{3n^2+n-2}$

    $=\lim\dfrac{n^3\Big(1-\dfrac{2}{n^2}\Big)}{n^2\Big(3+\dfrac{1}{n}-\dfrac{2}{n^2}\Big)}$

    $=\lim n.\dfrac{1-\dfrac{2}{n^2}}{3+\dfrac{1}{n}-\dfrac{2}{n^2}}$

    $=+\infty$

    2.

    $\lim\dfrac{-2+3n-2n^3}{3n-2}$

    $=\lim \dfrac{n^3\Big(\dfrac{-2}{n^3}+\dfrac{3}{n^2}-2\Big)}{n\Big(3-\dfrac{2}{n}\Big)}$

    $=\lim n^2.\dfrac{\dfrac{-2}{n^3}+\dfrac{3}{n^2}-2}{3-\dfrac{2}{n}}$

    $=-\infty$

    Bình luận
  2. Đáp án:lim (n^3 – 2n) / (3n^2 + n – 2)=n^3(1-2/n^2)/n^2(3+1/n-2/n^2)=limn.lim(1-2/n^2)/n^2(3+1/n-2/n^2)=+∞.(1-0)/(3+0-0)=+∞.1/3=+∞

    2. lim (-2 + 3n – 2n^3) / (3n – 2)=lim n^3(-2/n^3+3/n^2-2)/n(3-2/n)=lim n^2.lim(-2/n^3+3/n^2-2)/(3-2/n)=+∞.(0+0-2)/(3-0)=+∞.-2/3=-∞

     

    Giải thích các bước giải:

     

    Bình luận

Viết một bình luận