1. Tìm TXĐ a) y= 3/ cosx – 1 b) tan2x +tan x + 1 06/08/2021 Bởi Mackenzie 1. Tìm TXĐ a) y= 3/ cosx – 1 b) tan2x +tan x + 1
a, ĐK: $\cos x-1\ne 0$ $\Leftrightarrow \cos x\ne 1$ $\Leftrightarrow x\ne k2\pi$ $\to D=\mathbb{R}$ \ $\{k2\pi\}$ b, ĐI: $\cos2x\ne 0$, $\cos x\ne 0$ $\Leftrightarrow x\ne \dfrac{\pi}{4}+k\dfrac{\pi}{2}; x\ne \dfrac{\pi}{2}+k\pi$ $\to D=\mathbb{R}$ \ $\{\dfrac{\pi}{4}+k\dfrac{\pi}{2}; \dfrac{\pi}{2}+k\pi\}$ Bình luận
Đáp án: 1. a . TXĐ: \(D=R\)\{\(k.2\pi\)} \((k \epsilon Z)\) b. TXĐ: \(D=R\)\{\(\dfrac{\pi}{4}+k.\dfrac{\pi}{2};\dfrac{\pi}{2}+k.\pi\)} \((k \epsilon Z)\) Giải thích các bước giải: 1. a. ĐK: \(\cos x-1 \neq 0\) \(\Leftrightarrow \cos x \neq 1\) \(\Leftrightarrow x \neq k.2\pi\) TXĐ: \(D=R\)\{\(k.2\pi\)} \((k \epsilon Z)\) b. \(\tan 2x+\tan x+1=\dfrac{\sin 2x}{\cos 2x}+\dfrac{\sin x}{\cos x}+1\) ĐK: $\begin{cases}\cos 2x \neq 0\\ \cos x \neq 0\end{cases}$ \(\Leftrightarrow \) $\begin{cases}2x \neq \dfrac{\pi}{2}+k.\pi\\ x \neq \dfrac{\pi}{2}+k.\pi\end{cases}$ \(\Leftrightarrow \) $\begin{cases}x \neq \dfrac{\pi}{4}+k.\dfrac{\pi}{2}\\ x \neq \dfrac{\pi}{2}+k.\pi\end{cases}$ TXĐ: \(D=R\)\{\(\dfrac{\pi}{4}+k.\dfrac{\pi}{2};\dfrac{\pi}{2}+k.\pi\)} Bình luận
a,
ĐK: $\cos x-1\ne 0$
$\Leftrightarrow \cos x\ne 1$
$\Leftrightarrow x\ne k2\pi$
$\to D=\mathbb{R}$ \ $\{k2\pi\}$
b,
ĐI: $\cos2x\ne 0$, $\cos x\ne 0$
$\Leftrightarrow x\ne \dfrac{\pi}{4}+k\dfrac{\pi}{2}; x\ne \dfrac{\pi}{2}+k\pi$
$\to D=\mathbb{R}$ \ $\{\dfrac{\pi}{4}+k\dfrac{\pi}{2}; \dfrac{\pi}{2}+k\pi\}$
Đáp án:
1.
a . TXĐ: \(D=R\)\{\(k.2\pi\)} \((k \epsilon Z)\)
b. TXĐ: \(D=R\)\{\(\dfrac{\pi}{4}+k.\dfrac{\pi}{2};\dfrac{\pi}{2}+k.\pi\)} \((k \epsilon Z)\)
Giải thích các bước giải:
1.
a. ĐK: \(\cos x-1 \neq 0\)
\(\Leftrightarrow \cos x \neq 1\)
\(\Leftrightarrow x \neq k.2\pi\)
TXĐ: \(D=R\)\{\(k.2\pi\)} \((k \epsilon Z)\)
b.
\(\tan 2x+\tan x+1=\dfrac{\sin 2x}{\cos 2x}+\dfrac{\sin x}{\cos x}+1\)
ĐK:
$\begin{cases}\cos 2x \neq 0\\ \cos x \neq 0\end{cases}$
\(\Leftrightarrow \) $\begin{cases}2x \neq \dfrac{\pi}{2}+k.\pi\\ x \neq \dfrac{\pi}{2}+k.\pi\end{cases}$
\(\Leftrightarrow \) $\begin{cases}x \neq \dfrac{\pi}{4}+k.\dfrac{\pi}{2}\\ x \neq \dfrac{\pi}{2}+k.\pi\end{cases}$
TXĐ: \(D=R\)\{\(\dfrac{\pi}{4}+k.\dfrac{\pi}{2};\dfrac{\pi}{2}+k.\pi\)}