1,Tính nhẩm a,61^2 b201^2 c10,1^2 2,Tính nhẩm a,199^2 b,9,9^2 3,Tính a,(a+b-c)^2 b,(x+y+z)*(x+y-z) 28/08/2021 Bởi Delilah 1,Tính nhẩm a,61^2 b201^2 c10,1^2 2,Tính nhẩm a,199^2 b,9,9^2 3,Tính a,(a+b-c)^2 b,(x+y+z)*(x+y-z)
1. a) 61^2=3721 b) 201^2= 40401 c) 10,1^2= 102,01 2. a) 199^2= 39601 b) 9,9^2= 98,01 3. a) (a+b-c)^2 = (a+b)^2 – 2(a+b)c+ c^2 = a^2+2ab+b^2-2ac-2bc+c^2 = a^2+b^2+c^2+2ab-2ac-2bc b) (x+y+z)*(x+y-z) = (x+y)^2-z^2 = x^2+2xy+y^2-z^2 Bình luận
Đáp án: Giải thích các bước giải: $61^2=(60+1)^2=60^2+2.60+1=3600+120+1=3721$ $201^2=(200+1)^2=200^2+2.200+1=40000+400+1=40401$ $10,1^2=(10+0,1)^2=10^2+2.10.0,1+0.1^2=100+2+0,01=102,01$ $199^2=(200-1)^2=200^2-2.200+1=40000-400+1=39601$ $9,9^2=(10-0,1)^2=100-2.10.0,1+0,1^2=100-2+0,01=98,01$ 3. $(a+b-c)^2$ $=[(a+b)-c]^2$ $=(a+b)^2-2.(a+b).c+c^2$ $=a^2+2ab+b^2-2ac-2ab+c^2$ $=a^2+b^2+c^2-2ac$ $b,(x+y+z)(x+y-z)$ $=[(x+y)+z][(x+y)-z]$ $=(x+y)^2-z^2$ $=x^2+2xy+y^2-z^2$ Bình luận
1.
a) 61^2=3721
b) 201^2= 40401
c) 10,1^2= 102,01
2.
a) 199^2= 39601
b) 9,9^2= 98,01
3.
a) (a+b-c)^2
= (a+b)^2 – 2(a+b)c+ c^2
= a^2+2ab+b^2-2ac-2bc+c^2
= a^2+b^2+c^2+2ab-2ac-2bc
b) (x+y+z)*(x+y-z)
= (x+y)^2-z^2
= x^2+2xy+y^2-z^2
Đáp án:
Giải thích các bước giải:
$61^2=(60+1)^2=60^2+2.60+1=3600+120+1=3721$
$201^2=(200+1)^2=200^2+2.200+1=40000+400+1=40401$
$10,1^2=(10+0,1)^2=10^2+2.10.0,1+0.1^2=100+2+0,01=102,01$
$199^2=(200-1)^2=200^2-2.200+1=40000-400+1=39601$
$9,9^2=(10-0,1)^2=100-2.10.0,1+0,1^2=100-2+0,01=98,01$
3.
$(a+b-c)^2$
$=[(a+b)-c]^2$
$=(a+b)^2-2.(a+b).c+c^2$
$=a^2+2ab+b^2-2ac-2ab+c^2$
$=a^2+b^2+c^2-2ac$
$b,(x+y+z)(x+y-z)$
$=[(x+y)+z][(x+y)-z]$
$=(x+y)^2-z^2$
$=x^2+2xy+y^2-z^2$