1,tính tổng S=1+2^2+2^4+2^6+…….+2^98+2^100
2, tính tổng S=6^2+6^4+6^6+………+6^98++^100
3, tính tổng S=1+3^2+3^4+3^6+….+3^100+3^102
1,tính tổng S=1+2^2+2^4+2^6+…….+2^98+2^100
2, tính tổng S=6^2+6^4+6^6+………+6^98++^100
3, tính tổng S=1+3^2+3^4+3^6+….+3^100+3^102
Đáp án:
Giải thích các bước giải:
1.S=1+2^2+2^4+2^6+…….+2^98+2^100
4S=2^2+2^4+2^8+…+2^100+2^10
4S-S=2^202-1
3S=2^202-1
S==2^202-1/3
2.S=6^2+6^4+6^6+………+6^98++^100
36S=6^4+6^6+6^8+…+6^100+6^102
36S-S=6^102-6^2
S=6^102-6^2/35
3.S=1+3^2+3^4+3^6+….+3^100+3^102
9S=3^2+3^4+3^6+…+3^102+3^104
9S-S=3^104-1
S=3^104-1/8
$1)$
`S = 1 + 2^2 +2^4 +2^6 + … + 2^{98} + 2^{100}`
`2^2S = 2^2 + 2^4 + 2^6 +2^8 + … + 2^{100} + 2^{102}`
`=> 4S – S = 2^{102} – 1`
`=> 3S = 2^{102} – 1`
`=> S = {2^{102} – 1}/{3}`
$2)$
`S = 6^2 + 6^4 + 6^6 + … + 6^98 + 6^{100}`
`=> 36S = 6^4 + 6^6 + … + 6^{100} + 6^{102}`
`=> 36S – S = 6^{102} – 6^2`
`=> S = {6^{102] – 6^2}/{35}`
$3)$
`S = 1 +3^2 +3^4 + 3^6 + … + 3^{100} + 3^{102}`
`9S = 3^2 + 3^4 + 3^6 + … + 3^{102} +3^{104}`
`=> 8S = 3^{104} – 1`
`=> S = {3^{104} – 1}/8`