1,tính tổng S=1+2^2+2^4+2^6+…….+2^98+2^100
2, tính tổng S=6^2+6^4+6^6+………+6^98++^100
3, tính tổng S=1+3^2+3^4+3^6+….+3^100+3^102
1,tính tổng S=1+2^2+2^4+2^6+…….+2^98+2^100
2, tính tổng S=6^2+6^4+6^6+………+6^98++^100
3, tính tổng S=1+3^2+3^4+3^6+….+3^100+3^102
$1$.
$S = 1 + 2^2 + 2^4 + 2^6 + …. + 2^{98} + 2^{100}$
$⇔ 2^2S = 2^2 + 2^4 + 2^6 + 2^8 + …. + 2^{100} + 2^{102}$
$⇔ 4S – S = (2^2 + 2^4 + 2^6 + 2^8 + …. + 2^{100} + 2^{102})-( 1 + 2^2 + 2^4 + 2^6 + …. + 2^{98} + 2^{100})$
$⇔ 3S = 2^{102} -1$
$⇔ S = \dfrac{2^{102}-1}{3}$
$2$.
$S = 6^2 + 6^4 + 6^6 + …. + 6^{98} + 6^{100}$
$⇔ 6^2S = 6^4 + 6^6 + 6^8 + …. + 6^{100} + 6^{102}$
$⇔ 36S – S = (6^4 + 6^6 + 6^8 + …. + 6^{100} + 6^{102})-(6^2 + 6^4 + 6^6 + …. + 6^{98} + 6^{100})$
$⇔ 35S = 6^{102} – 6^2$
$⇔ 35S = \dfrac{6^{102}-6^2}{35}$
$3$.
$S = 1 + 3^2 + 3^4 + 3^6 + …. + 3^{100} + 3^{102}$
$⇔ 3^2S = 3^2 + 3^4 + 3^6 + 3^8 + …. + 3^{102} + 3^{104}$
$⇔ 9S – S = (3^2 + 3^4 + 3^6 + 3^8 + …. + 3^{102} + 3^{104})-(1 + 3^2 + 3^4 + 3^6 + …. + 3^{100} + 3^{102})$
$⇔ 8S = 3^{104} – 1$
$⇔ S = \dfrac{3^{104}-1}{8}$
1 :
$S = 1 + 2^{2} +…+ 2^{100}$
$4S = 2^{2} + 2^{4} +…+ 2^{102}$
$4S – S = (2^{2} + 2^{4} +…+ 2^{102}) – (1 + 2^{2} +…+ 2^{100})$
$3S = 2^{102} – 1$
$S = \frac{2^{102} – 1}{3}$
2 :
$S = 6^{4} + 6^{6} +…+ 6^{102}$
$36S = 6^{4} + 6^{6} +…+ 6^{102}$
$36S – S = (6^{4} + 6^{6} +…+ 6^{102}) – (6^{2} + 6^{4} +…+ 6^{100})$
$35S = 6^{102} – 6^{2}$
$S = \frac{6^{102} – 6^{2}}{35}$
3 :
$S = 1 + 3^{2} +….+ 3^{102}$
$9S = 3^{2} + 3^{4} +….+ 3^{104}$
$9S – S = (3^{2} + 3^{4} +….+ 3^{104}) – (1 + 3^{2} +….+ 3^{102})$
$9S = 3^{104} – 1$
$S = \frac{3^{104} – 1}{9}$