√x-1 + √y +3=6 x+y=24 giải hệ phương trình 28/07/2021 Bởi Abigail √x-1 + √y +3=6 x+y=24 giải hệ phương trình
Đáp án: $\,\left( {x;y} \right) = \left\{ {\left( {2;22} \right);\left( {26; – 2} \right)} \right\}$ Giải thích các bước giải: $\begin{array}{l}Dkxd:x \ge 1;y \ge – 3\\\left\{ \begin{array}{l}\sqrt {x – 1} + \sqrt {y + 3} = 6\\x + y = 24\end{array} \right.\\ \Leftrightarrow x – 1 + 2\sqrt {x – 1} .\sqrt {y + 3} + y + 3 = 36\\ \Leftrightarrow x + y + 2 + 2\sqrt {\left( {x – 1} \right)\left( {y + 3} \right)} = 36\\ \Leftrightarrow 24 + 2 + 2\sqrt {\left( {x – 1} \right)\left( {y + 3} \right)} = 36\\ \Leftrightarrow \sqrt {\left( {x – 1} \right)\left( {y + 3} \right)} = 5\\ \Leftrightarrow \left( {x – 1} \right)\left( {y + 3} \right) = 25\\ \Leftrightarrow \left( {24 – y – 1} \right)\left( {y + 3} \right) = 25\left( {do:x + y = 24} \right)\\ \Leftrightarrow \left( {23 – y} \right)\left( {y + 3} \right) = 25\\ \Leftrightarrow – {y^2} + 20y + 69 = 25\\ \Leftrightarrow {y^2} – 20y – 44 = 0\\ \Leftrightarrow \left( {y – 22} \right)\left( {y + 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}y = 22\left( {tmdk} \right) \Leftrightarrow x = 2\left( {tm} \right)\\y = – 2\left( {tmdk} \right) \Leftrightarrow x = 26\left( {tm} \right)\end{array} \right.\\Vậy\,\left( {x;y} \right) = \left\{ {\left( {2;22} \right);\left( {26; – 2} \right)} \right\}\end{array}$ Bình luận
Đáp án: $\,\left( {x;y} \right) = \left\{ {\left( {2;22} \right);\left( {26; – 2} \right)} \right\}$
Giải thích các bước giải:
$\begin{array}{l}
Dkxd:x \ge 1;y \ge – 3\\
\left\{ \begin{array}{l}
\sqrt {x – 1} + \sqrt {y + 3} = 6\\
x + y = 24
\end{array} \right.\\
\Leftrightarrow x – 1 + 2\sqrt {x – 1} .\sqrt {y + 3} + y + 3 = 36\\
\Leftrightarrow x + y + 2 + 2\sqrt {\left( {x – 1} \right)\left( {y + 3} \right)} = 36\\
\Leftrightarrow 24 + 2 + 2\sqrt {\left( {x – 1} \right)\left( {y + 3} \right)} = 36\\
\Leftrightarrow \sqrt {\left( {x – 1} \right)\left( {y + 3} \right)} = 5\\
\Leftrightarrow \left( {x – 1} \right)\left( {y + 3} \right) = 25\\
\Leftrightarrow \left( {24 – y – 1} \right)\left( {y + 3} \right) = 25\left( {do:x + y = 24} \right)\\
\Leftrightarrow \left( {23 – y} \right)\left( {y + 3} \right) = 25\\
\Leftrightarrow – {y^2} + 20y + 69 = 25\\
\Leftrightarrow {y^2} – 20y – 44 = 0\\
\Leftrightarrow \left( {y – 22} \right)\left( {y + 2} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
y = 22\left( {tmdk} \right) \Leftrightarrow x = 2\left( {tm} \right)\\
y = – 2\left( {tmdk} \right) \Leftrightarrow x = 26\left( {tm} \right)
\end{array} \right.\\
Vậy\,\left( {x;y} \right) = \left\{ {\left( {2;22} \right);\left( {26; – 2} \right)} \right\}
\end{array}$