√2x-1 +2√2y+2 +3√4z-3=x+y+2x+4 Tìm nghiệm của pt 01/10/2021 Bởi Madeline √2x-1 +2√2y+2 +3√4z-3=x+y+2x+4 Tìm nghiệm của pt
Đáp án: $(x;y;z) = (1;3;3)$ Giải thích các bước giải: \(\begin{array}{l}\text{Sửa đề:}\,\sqrt{2x – 1} + 2\sqrt{2y – 2} + 3\sqrt{4z – 3} = x + y + 2z + 4\quad (*)\\ĐKXĐ: \begin{cases}2x – 1 \geqslant 0\\2y – 2 \geqslant 0\\4z – 3\geqslant 0\end{cases}\Leftrightarrow \begin{cases}x \geqslant\dfrac12\\y \geqslant 1\\z \geqslant\dfrac34\end{cases}\\(*) \Leftrightarrow 2\sqrt{2x – 1} + 4\sqrt{2y – 2} + 6\sqrt{4z – 3} = 2x + 2y + 4z + 8\\\Leftrightarrow 2x – 2\sqrt{2x – 1} + 2y – 4\sqrt{2y – 2} + 4z – 6\sqrt{4z – 3} + 8 = 0\\\Leftrightarrow \left(2x – 1 – 2\sqrt{2x – 1} + 1\right) + \left(2y -2 – 4\sqrt{2y – 2} + 4\right) + \left(4z – 3 – 6\sqrt{4z – 3} + 9\right) = 0\\\Leftrightarrow \left(\sqrt{2x – 1} – 1\right)^2 + \left(\sqrt{2y – 2} – 2\right)^2 + \left(\sqrt{4z – 3} – 3\right)^2 = 0\\\Leftrightarrow \begin{cases}\sqrt{2x -1} – 1 =0\\\sqrt{2y- 2} – 2 =0\\\sqrt{4z – 3} – 3 = 0\end{cases}\\\Leftrightarrow \begin{cases}\sqrt{2x -1} =1\\\sqrt{2y- 2} =2\\\sqrt{4z – 3} =3\end{cases}\\\Leftrightarrow \begin{cases}2x -1 =1\\2y- 2 =4\\4z – 3 =9\end{cases}\\\Leftrightarrow \begin{cases}x=1\\y=3\\z = 3\end{cases}\quad (nhận)\\Vậy\,\,(x;y;z) = (1;3;3)\end{array}\) Bình luận
Đáp án:
$(x;y;z) = (1;3;3)$
Giải thích các bước giải:
\(\begin{array}{l}
\text{Sửa đề:}\,\sqrt{2x – 1} + 2\sqrt{2y – 2} + 3\sqrt{4z – 3} = x + y + 2z + 4\quad (*)\\
ĐKXĐ: \begin{cases}2x – 1 \geqslant 0\\2y – 2 \geqslant 0\\4z – 3\geqslant 0\end{cases}
\Leftrightarrow \begin{cases}x \geqslant\dfrac12\\y \geqslant 1\\z \geqslant\dfrac34\end{cases}\\
(*) \Leftrightarrow 2\sqrt{2x – 1} + 4\sqrt{2y – 2} + 6\sqrt{4z – 3} = 2x + 2y + 4z + 8\\
\Leftrightarrow 2x – 2\sqrt{2x – 1} + 2y – 4\sqrt{2y – 2} + 4z – 6\sqrt{4z – 3} + 8 = 0\\
\Leftrightarrow \left(2x – 1 – 2\sqrt{2x – 1} + 1\right) + \left(2y -2 – 4\sqrt{2y – 2} + 4\right) + \left(4z – 3 – 6\sqrt{4z – 3} + 9\right) = 0\\
\Leftrightarrow \left(\sqrt{2x – 1} – 1\right)^2 + \left(\sqrt{2y – 2} – 2\right)^2 + \left(\sqrt{4z – 3} – 3\right)^2 = 0\\
\Leftrightarrow \begin{cases}\sqrt{2x -1} – 1 =0\\\sqrt{2y- 2} – 2 =0\\\sqrt{4z – 3} – 3 = 0\end{cases}\\
\Leftrightarrow \begin{cases}\sqrt{2x -1} =1\\\sqrt{2y- 2} =2\\\sqrt{4z – 3} =3\end{cases}\\
\Leftrightarrow \begin{cases}2x -1 =1\\2y- 2 =4\\4z – 3 =9\end{cases}\\
\Leftrightarrow \begin{cases}x=1\\y=3\\z = 3\end{cases}\quad (nhận)\\
Vậy\,\,(x;y;z) = (1;3;3)
\end{array}\)