x^2 + x – 2x = 0 1/x-1 – 3x^2/x^3-1 = 2x/x^2+x+1

x^2 + x – 2x = 0
1/x-1 – 3x^2/x^3-1 = 2x/x^2+x+1

0 bình luận về “x^2 + x – 2x = 0 1/x-1 – 3x^2/x^3-1 = 2x/x^2+x+1”

  1. $x^2+x-2x=0$

    $⇔x^2-x=0$

    $x(x-1)=0$

    $⇔x=0$ hoặc $x-1=0$

    $⇔x=0$ hoặc $x=1$

    Vậy $S=\{0;1\}$

    $\frac{1}{x-1}-$ $\frac{3x^2}{x^3-1}=$ $\frac{2x}{x^2+x+1}$ (1) $ĐKXĐ: x$ $\neq1$

    $(1)⇔\frac{x^2+x+1}{(x-1)(x^2+x+1)}-$ $\frac{3x^2}{(x-1)(x^2+x+1)}=$ $\frac{2x(x-1)}{(x-1)(x^2+x+1)}$

    $⇒x^2+x+1-3x^2=2x(x-1)$

    $⇔-2x^2+x+1=2x^2-2x$

    $⇔-2x^2-2x^2+x+2x+1=0$

    $⇔-4x^2+3x+1=0$

    $⇔-4x^2+4x-x+1=0$

    $⇔-4x(x-1)-(x-1)=0$

    $⇔(x-1)(-4x-1)=0$

    $⇔$\(\left[ \begin{array}{l}x-1=0\\-4x-1=0\end{array} \right.\)

    $⇔$\(\left[ \begin{array}{l}x=1(loại)\\x=-1/4)t/m)\end{array} \right.\)

    Vậy $S=\{-1/4\}$

    Bình luận

Viết một bình luận