(x+√(x^2-2x))/(x-√(x^2-2x)) – (x-√(x^2-2x))/(x+√(x^2-2x)) a/tìm ĐKXD b/Rút gọn A c/Tìm x để A<2

(x+√(x^2-2x))/(x-√(x^2-2x)) – (x-√(x^2-2x))/(x+√(x^2-2x))
a/tìm ĐKXD
b/Rút gọn A
c/Tìm x để A<2

0 bình luận về “(x+√(x^2-2x))/(x-√(x^2-2x)) – (x-√(x^2-2x))/(x+√(x^2-2x)) a/tìm ĐKXD b/Rút gọn A c/Tìm x để A<2”

  1. Đáp án:

    $\begin{array}{l}
    a)A = \dfrac{{x + \sqrt {{x^2} – 2x} }}{{x – \sqrt {{x^2} – 2x} }} – \dfrac{{x – \sqrt {{x^2} – 2x} }}{{x + \sqrt {{x^2} – 2x} }}\\
    Dkxd:\left\{ \begin{array}{l}
    {x^2} – 2x \ge 0\\
    x – \sqrt {{x^2} – 2x} \# 0
    \end{array} \right.\\
     \Leftrightarrow \left\{ \begin{array}{l}
    x\left( {x – 2} \right) \ge 0\\
    x\# \sqrt {{x^2} – 2x} 
    \end{array} \right.\\
     \Leftrightarrow \left\{ \begin{array}{l}
    \left[ \begin{array}{l}
    x \ge 2\\
    x \le 0
    \end{array} \right.\\
    {x^2}\# {x^2} – 2x
    \end{array} \right.\\
     \Leftrightarrow \left\{ \begin{array}{l}
    \left[ \begin{array}{l}
    x \ge 2\\
    x \le 0
    \end{array} \right.\\
    x\# 0
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x \ge 2\\
    x < 0
    \end{array} \right.\\
    Vậy\,x < 0\,hoặc\,x \ge 2\\
    b)A = \dfrac{{x + \sqrt {{x^2} – 2x} }}{{x – \sqrt {{x^2} – 2x} }} – \dfrac{{x – \sqrt {{x^2} – 2x} }}{{x + \sqrt {{x^2} – 2x} }}\\
     = \dfrac{{{{\left( {x + \sqrt {{x^2} – 2x} } \right)}^2} – {{\left( {x – \sqrt {{x^2} – 2x} } \right)}^2}}}{{\left( {x + \sqrt {{x^2} – 2x} } \right).\left( {x – \sqrt {{x^2} – 2x} } \right)}}\\
     = \dfrac{{{x^2} + 2.x.\sqrt {{x^2} – 2x}  + {x^2} – 2x – \left( {{x^2} – 2x\sqrt {{x^2} – 2x}  + {x^2} – 2x} \right)}}{{{x^2} – \left( {{x^2} – 2x} \right)}}\\
     = \dfrac{{4x\sqrt {{x^2} – 2x} }}{{2x}}\\
     = 2\sqrt {{x^2} – 2x} \\
    c)A < 2\\
     \Leftrightarrow 2\sqrt {{x^2} – 2x}  < 2\\
     \Leftrightarrow \sqrt {{x^2} – 2x}  < 1\\
     \Leftrightarrow {x^2} – 2x < 1\\
     \Leftrightarrow {x^2} – 2x + 1 < 2\\
     \Leftrightarrow {\left( {x – 1} \right)^2} < 2\\
     \Leftrightarrow  – \sqrt 2  < x – 1 < \sqrt 2 \\
     \Leftrightarrow 1 – \sqrt 2  < x < 1 + \sqrt 2 \\
    Do:\left[ \begin{array}{l}
    x \ge 2\\
    x < 0
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    2 \le x < 1 + \sqrt 2 \\
    1 – \sqrt 2  < x < 0
    \end{array} \right.\\
    Vậy\,1 – \sqrt 2  < x < 0\,hoặc\,2 \le x < 1 + \sqrt 2 
    \end{array}$

    Bình luận

Viết một bình luận