x/2^2x/2^3x/2^4=x/3^2+x/3^3+x/3^4 Tính x PLEASE HELP ME

x/2^2x/2^3x/2^4=x/3^2+x/3^3+x/3^4
Tính x
PLEASE HELP ME

0 bình luận về “x/2^2x/2^3x/2^4=x/3^2+x/3^3+x/3^4 Tính x PLEASE HELP ME”

  1. `\qquad x/{2^2}+x/{2^3}+x/{2^4}=x/{3^2}+x/{3^3}+x/{3^4}`

    `<=>x/4+x/8+x/{16}=x/9+x/{27}+x/{81}`

    `<=>(x/4+x/8+x/{16}-x/9-x/{27}-x/{81})=0`

    `<=>x(1/ 4 + 1/ 8 + 1/{16}- 1/9 – 1/{27}- 1/{81})=0` $(1)$

    Vì `1/ 4>1/9; 1/ 8>1/{27};1/{16}>1/{81}`

    `=>1/ 4-1/9>0; 1/ 8-1/{27}>0;1/{16}-1/{81}>0`

    `=>1/ 4 + 1/ 8 + 1/{16}- 1/9 – 1/{27}- 1/{81}=(1/ 4-1/9)+(1/ 8-1/{27})+(1/16-1/81)>0`

    Từ `(1)=>x=0`

    Vậy `x=0`

    Bình luận
  2. `x/2^2*x/2^3*x/2^4=x/3^2+x/3^3+x/3^4`

    `<=>x^3/2^9=x/9+x/27+x/81`

    `<=>x^3/2^9=(9x)/81+(3x)/81+x/81`

    `<=>x^3/512=(13x)/81`

    `=>81x^3=13x*512`

    `<=>81x^3-13x*512=0`

    `<=>x(81x^2-6656)=0`

    `<=>` \(\left[ \begin{array}{l}81x^2=6656\\x=0\end{array} \right.\)

    `<=>` \(\left[ \begin{array}{l}81x^2=6656\\x=0\end{array} \right.\) `

    Vậy `S={ 0; +-\frac{16\sqrt[26]}{9}}`

     

    Bình luận

Viết một bình luận