2/2.3 + 2/3.4 + 2/4.5 + … + 2/x(x+1) = 2007/2009

2/2.3 + 2/3.4 + 2/4.5 + … + 2/x(x+1) = 2007/2009

0 bình luận về “2/2.3 + 2/3.4 + 2/4.5 + … + 2/x(x+1) = 2007/2009”

  1. `2/2.3+2/3.4+2/4.5+…+2/{x(x+1)}=2007/2009`

    `⇒2[1/2.3+1/3.4+1/4.5+…+1/{x(x+1)}]=2007/2009`

    `⇒2(1/2-1/3+1/3-1/4+1/4-1/5+…+1/x-1/{x+1})=2007/2009`

    `⇒2(1/2-1/{x+1})=2007/2009`

    `⇒1-2/{x+1}=2007/2009`

    `⇒2/{x+1}=2/2009`

    `⇒x+1=2009`

    `⇒x=2008`

    Bình luận
  2. Ptrinh tương đương vs

    $2(\dfrac{1}{2.3} + \dfrac{1}{3.4} + \cdots + \dfrac{1}{x(x+1)}) = \dfrac{2007}{2009}$

    $<-> \dfrac{1}{2} – \dfrac{1}{3} + \dfrac{1}{3} – \dfrac{1}{4} + \cdots + \dfrac{1}{x} – \dfrac{1}{x+1} = \dfrac{2007}{4018}$

    $<-> \dfrac{1}{2} – \dfrac{1}{x+1} = \dfrac{2007}{4018}$

    $<-> \dfrac{1}{x+1} = \dfrac{1}{2} – \dfrac{2007}{4018}$

    $<-> \dfrac{1}{x+1} = \dfrac{1}{2009}$

    $<-> x+1 = 2009$

    $<-> x = 2008$.

    Vậy nghiệm là 2008.

    Bình luận

Viết một bình luận