2x²+(2m-1)x+m-1=0 tìm giá trị để m có hai nghiệm thỏa 1/x1+1/x2=-4 19/07/2021 Bởi Eva 2x²+(2m-1)x+m-1=0 tìm giá trị để m có hai nghiệm thỏa 1/x1+1/x2=-4
Đáp án: \(m = \dfrac{3}{2}\) Giải thích các bước giải: Để phương trình có nghiệm \(\begin{array}{l} \to \Delta \ge 0\\ \to 4{m^2} – 4m + 1 – 4.2\left( {m – 1} \right) \ge 0\\ \to 4{m^2} – 12m + 9 \ge 0\\ \to {\left( {2m – 3} \right)^2} \ge 0\left( {ld} \right)\forall m\\Vi – et:\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{ – 2m + 1}}{2}\\{x_1}{x_2} = \dfrac{{m – 1}}{2}\end{array} \right.\\\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} = – 4\\ \to \dfrac{{{x_1} + {x_2}}}{{{x_1}{x_2}}} = – 4\\ \to \dfrac{{{x_1} + {x_2}}}{{{x_1}{x_2}}} = \dfrac{{ – 4{x_1}{x_2}}}{{{x_1}{x_2}}}\\ \to \dfrac{{{x_1} + {x_2} + 4{x_1}{x_2}}}{{{x_1}{x_2}}} = 0\\ \to \left\{ \begin{array}{l}{x_1} + {x_2} + 4{x_1}{x_2} = 0\\{x_1}{x_2} \ne 0\end{array} \right.\\ \to \left\{ \begin{array}{l}\dfrac{{ – 2m + 1}}{2} + 4.\dfrac{{m – 1}}{2} = 0\\\dfrac{{m – 1}}{2} \ne 0\end{array} \right.\\ \to \left\{ \begin{array}{l}m \ne 1\\ – 2m + 1 + 4m – 4 = 0\end{array} \right.\\ \to \left\{ \begin{array}{l}m \ne 1\\2m = 3\end{array} \right.\\ \to m = \dfrac{3}{2}\end{array}\) Bình luận
Đáp án:
\(m = \dfrac{3}{2}\)
Giải thích các bước giải:
Để phương trình có nghiệm
\(\begin{array}{l}
\to \Delta \ge 0\\
\to 4{m^2} – 4m + 1 – 4.2\left( {m – 1} \right) \ge 0\\
\to 4{m^2} – 12m + 9 \ge 0\\
\to {\left( {2m – 3} \right)^2} \ge 0\left( {ld} \right)\forall m\\
Vi – et:\left\{ \begin{array}{l}
{x_1} + {x_2} = \dfrac{{ – 2m + 1}}{2}\\
{x_1}{x_2} = \dfrac{{m – 1}}{2}
\end{array} \right.\\
\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} = – 4\\
\to \dfrac{{{x_1} + {x_2}}}{{{x_1}{x_2}}} = – 4\\
\to \dfrac{{{x_1} + {x_2}}}{{{x_1}{x_2}}} = \dfrac{{ – 4{x_1}{x_2}}}{{{x_1}{x_2}}}\\
\to \dfrac{{{x_1} + {x_2} + 4{x_1}{x_2}}}{{{x_1}{x_2}}} = 0\\
\to \left\{ \begin{array}{l}
{x_1} + {x_2} + 4{x_1}{x_2} = 0\\
{x_1}{x_2} \ne 0
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\dfrac{{ – 2m + 1}}{2} + 4.\dfrac{{m – 1}}{2} = 0\\
\dfrac{{m – 1}}{2} \ne 0
\end{array} \right.\\
\to \left\{ \begin{array}{l}
m \ne 1\\
– 2m + 1 + 4m – 4 = 0
\end{array} \right.\\
\to \left\{ \begin{array}{l}
m \ne 1\\
2m = 3
\end{array} \right.\\
\to m = \dfrac{3}{2}
\end{array}\)