2/3+14/15+34/35+62/63+98/99+142/143+194/195

2/3+14/15+34/35+62/63+98/99+142/143+194/195

0 bình luận về “2/3+14/15+34/35+62/63+98/99+142/143+194/195”

  1. Đáp án:

    $\frac{98}{15}$

    Giải thích các bước giải:

    A = $\frac{2}{3}$ + $\frac{14}{15}$ + $\frac{34}{35}$ + $\frac{62}{63}$ + $\frac{98}{99}$ + $\frac{142}{143}$ + $\frac{194}{195}$

    = (1 – $\frac{1}{3}$) + (1 – $\frac{1}{15}$) + (1 – $\frac{1}{35}$) + (1 – $\frac{1}{63}$) + (1 – $\frac{1}{99}$) + (1 – $\frac{1}{143}$) + (1 – $\frac{1}{195}$)

    = (1 + 1 + 1 + 1 + 1 + 1 + 1) – ($\frac{1}{3}$ + $\frac{1}{15}$ + $\frac{1}{35}$ + $\frac{1}{63}$ + $\frac{1}{99}$ + $\frac{1}{143}$ + $\frac{1}{195}$)

    = 7 – ($\frac{1}{1.3}$ + $\frac{1}{3.5}$ + $\frac{1}{5.7}$ + $\frac{1}{7.9}$ + $\frac{1}{9.11}$ + $\frac{1}{11.13}$ + $\frac{1}{13.15}$)

    Đặt S = $\frac{1}{1.3}$ + $\frac{1}{3.5}$ + $\frac{1}{5.7}$ + $\frac{1}{7.9}$ + $\frac{1}{9.11}$ + $\frac{1}{11.13}$ + $\frac{1}{13.15}$

    ⇒ A = 7 – S

    Ta có: 2S = 2.($\frac{1}{1.3}$ + $\frac{1}{3.5}$ + $\frac{1}{5.7}$ + $\frac{1}{7.9}$ + $\frac{1}{9.11}$ + $\frac{1}{11.13}$ + $\frac{1}{13.15}$)

    = $\frac{2}{1.3}$ + $\frac{2}{3.5}$ + $\frac{2}{5.7}$ + $\frac{2}{7.9}$ + $\frac{2}{9.11}$ + $\frac{2}{11.13}$ + $\frac{2}{13.15}$

    = 1 – $\frac{1}{3}$ + $\frac{1}{3}$ – $\frac{1}{5}$ + $\frac{1}{5}$ – $\frac{1}{7}$ + $\frac{1}{7}$ – $\frac{1}{9}$ + $\frac{1}{9}$ – $\frac{1}{11}$ + $\frac{1}{11}$ – $\frac{1}{13}$ + $\frac{1}{13}$ – $\frac{1}{15}$ 

    = 1 – $\frac{1}{15}$ = $\frac{14}{15}$

    ⇒ S = $\frac{14}{15}$ : 2 = $\frac{7}{15}$

    ⇒ A = 7 – S = 7 – $\frac{7}{15}$ = $\frac{98}{15}$

    Vậy A = $\frac{2}{3}$ + $\frac{14}{15}$ + $\frac{34}{35}$ + $\frac{62}{63}$ + $\frac{98}{99}$ + $\frac{142}{143}$ + $\frac{194}{195}$ = $\frac{98}{15}$

    Chúc bn học tốt!

    Bình luận

Viết một bình luận