2(x-5) – x ( x+ 1) = x ( 5-x) b,x(x-5)-(x+2) (x-3(=6 c, (2x+1)(x-3)=2x (x+5)-4x d, (x-5)(x+1) – ( x-2)(x+3) 12/08/2021 Bởi Audrey 2(x-5) – x ( x+ 1) = x ( 5-x) b,x(x-5)-(x+2) (x-3(=6 c, (2x+1)(x-3)=2x (x+5)-4x d, (x-5)(x+1) – ( x-2)(x+3)
a.2(x-5) – x ( x+ 1) = x ( 5-x)<=> 2x – 10 – x^2 – x = 5x – x^2<=> x – x^2 – 5x + x^2 = 10<=> -4x = 10<=> x = -5/2b,x(x-5)-(x+2) (x-3(=6<=> x^2 – 5x – x^2 + x + 6 = 6<=> -4x = 0<=> x = 0 c, (2x+1)(x-3)=2x (x+5)-4x<=> 2x^2 – 5x – 3 = 2x^2 + 10x – 4x<=> 2x^2 – 5x – 2x^2 – 6x = 3<=> -11x = 3<=> x = -3/11d, (x-5)(x+1) – ( x-2)(x+3)= x^2 – 4x – 5 – x^2 – x + 6= -5x + 1 chúc bạn hok tốt cho mk ctlhn nhé mk cảm ơn ạ Bình luận
$a)$ $2(x-5) – x ( x+ 1) = x ( 5-x)$ $⇔2x-10-x^{2}-x=5x-x^{2}$ $⇔2x-x-5x-x^{2}+x^{2}=10$ $⇔-4x^{}=10$ $⇔x=\frac{-5}{2}$ $Vậy$ $x=\frac{-5}{2}$ $b)$ $x(x-5)-(x+2) (x-3)=6$ $⇔x^{2}-5x-x^{2}+3x-2x+6=6$ $⇔-4x^{}=0$ $x=0$ $Vậy$ $x=0$ $c)$ $(2x+1)(x-3)=2x (x+5)-4x$ $⇔2x^{2}-6x+x-3=2x^{2}+10x-4x$ $⇔2x^{2}-6x+x-2x^{2}-10x+4x=3$ $⇔-11x=3$ $⇔x= \frac{-3}{11} $ $Vậy$ $x= \frac{-3}{11} $ $d)$ $(x-5)(x+1) – ( x-2)(x+3)$ $=x^{2}+x-5x-5-x^{2}+2x-3x+6$ $=-5x+1^{}$ Bình luận
a.2(x-5) – x ( x+ 1) = x ( 5-x)
<=> 2x – 10 – x^2 – x = 5x – x^2
<=> x – x^2 – 5x + x^2 = 10
<=> -4x = 10
<=> x = -5/2
b,x(x-5)-(x+2) (x-3(=6
<=> x^2 – 5x – x^2 + x + 6 = 6
<=> -4x = 0
<=> x = 0
c, (2x+1)(x-3)=2x (x+5)-4x
<=> 2x^2 – 5x – 3 = 2x^2 + 10x – 4x
<=> 2x^2 – 5x – 2x^2 – 6x = 3
<=> -11x = 3
<=> x = -3/11
d, (x-5)(x+1) – ( x-2)(x+3)
= x^2 – 4x – 5 – x^2 – x + 6
= -5x + 1
chúc bạn hok tốt cho mk ctlhn nhé mk cảm ơn ạ
$a)$
$2(x-5) – x ( x+ 1) = x ( 5-x)$
$⇔2x-10-x^{2}-x=5x-x^{2}$
$⇔2x-x-5x-x^{2}+x^{2}=10$
$⇔-4x^{}=10$
$⇔x=\frac{-5}{2}$
$Vậy$ $x=\frac{-5}{2}$
$b)$
$x(x-5)-(x+2) (x-3)=6$
$⇔x^{2}-5x-x^{2}+3x-2x+6=6$
$⇔-4x^{}=0$
$x=0$
$Vậy$ $x=0$
$c)$
$(2x+1)(x-3)=2x (x+5)-4x$
$⇔2x^{2}-6x+x-3=2x^{2}+10x-4x$
$⇔2x^{2}-6x+x-2x^{2}-10x+4x=3$
$⇔-11x=3$
$⇔x= \frac{-3}{11} $
$Vậy$ $x= \frac{-3}{11} $
$d)$
$(x-5)(x+1) – ( x-2)(x+3)$
$=x^{2}+x-5x-5-x^{2}+2x-3x+6$
$=-5x+1^{}$