2(x-5) – x ( x+ 1) = x ( 5-x) b,x(x-5)-(x+2) (x-3(=6 c, (2x+1)(x-3)=2x (x+5)-4x d, (x-5)(x+1) – ( x-2)(x+3)

2(x-5) – x ( x+ 1) = x ( 5-x)
b,x(x-5)-(x+2) (x-3(=6
c, (2x+1)(x-3)=2x (x+5)-4x
d, (x-5)(x+1) – ( x-2)(x+3)

0 bình luận về “2(x-5) – x ( x+ 1) = x ( 5-x) b,x(x-5)-(x+2) (x-3(=6 c, (2x+1)(x-3)=2x (x+5)-4x d, (x-5)(x+1) – ( x-2)(x+3)”

  1. a.2(x-5) – x ( x+ 1) = x ( 5-x)
    <=> 2x – 10 – x^2 – x = 5x – x^2
    <=> x – x^2 – 5x  + x^2 = 10
    <=> -4x = 10
    <=> x = -5/2
    b,x(x-5)-(x+2) (x-3(=6
    <=> x^2 – 5x – x^2 + x + 6 = 6
    <=> -4x = 0
    <=> x = 0

    c, (2x+1)(x-3)=2x (x+5)-4x
    <=> 2x^2 – 5x – 3 = 2x^2 + 10x – 4x
    <=> 2x^2 – 5x – 2x^2 – 6x = 3
    <=> -11x = 3
    <=> x = -3/11
    d, (x-5)(x+1) – ( x-2)(x+3)
    = x^2 – 4x – 5 – x^2 – x + 6
    = -5x + 1

    chúc bạn hok tốt cho mk ctlhn nhé mk cảm ơn ạ

     

    Bình luận
  2. $a)$

    $2(x-5) – x ( x+ 1) = x ( 5-x)$

    $⇔2x-10-x^{2}-x=5x-x^{2}$

    $⇔2x-x-5x-x^{2}+x^{2}=10$

    $⇔-4x^{}=10$

    $⇔x=\frac{-5}{2}$

          $Vậy$ $x=\frac{-5}{2}$

    $b)$

    $x(x-5)-(x+2) (x-3)=6$

    $⇔x^{2}-5x-x^{2}+3x-2x+6=6$

    $⇔-4x^{}=0$

    $x=0$

          $Vậy$ $x=0$

    $c)$

    $(2x+1)(x-3)=2x (x+5)-4x$

    $⇔2x^{2}-6x+x-3=2x^{2}+10x-4x$

    $⇔2x^{2}-6x+x-2x^{2}-10x+4x=3$

    $⇔-11x=3$

    $⇔x= \frac{-3}{11} $

           $Vậy$ $x= \frac{-3}{11} $

    $d)$

    $(x-5)(x+1) – ( x-2)(x+3)$

    $=x^{2}+x-5x-5-x^{2}+2x-3x+6$ 

    $=-5x+1^{}$

    Bình luận

Viết một bình luận