|2.x- $\frac{1}{3}$ | + $\frac{5}{6}$ =1 23/08/2021 Bởi Hadley |2.x- $\frac{1}{3}$ | + $\frac{5}{6}$ =1
Đáp án + Giải thích các bước giải: |2x – 1/3| = 1 – 5/6 |2x – 1/3| = 1/6 Ta xét hai trường hợp: TH1: 2x – 1/3 = 1/6 2x = 1/6 + 1/3 2x = 1/6 + 2/6 2x = 1/2 x = 1/2 : 2 x = 1/4 TH2: 2x – 1/3 = -1/6 2x = -1/6 + 1/3 2x = -1/6 + 2/6 2x = 1/6 x = 1/6 : 2 x = 1/12 => x bằng 1/4 hoặc 1/12 Bình luận
Đáp án: Giải thích các bước giải: ` |2.x-1/3| + 5/6 = 1 ` ` |2.x-1/3| = 1 – 5/6 ` ` |2.x – 1/3 | = 1/6 ` \(\left[ \begin{array}{l}2.x – \dfrac{1}{3}=\dfrac{1}{6}\\2.x – \dfrac{1}{3} = -\dfrac{1}{6}\end{array} \right.\) \(\left[ \begin{array}{l}2.x =\dfrac{1}{6} + \dfrac{1}{3}\\2.x = -\dfrac{1}{6} + \dfrac{1}{3} \end{array} \right.\) \(\left[ \begin{array}{l}2.x =\dfrac{1}{2}\\2.x = \dfrac{1}{6}\end{array} \right.\) \(\left[ \begin{array}{l}x =\dfrac{1}{2}: 2\\x = \dfrac{1}{6}:2\end{array} \right.\) \(\left[ \begin{array}{l}x =\dfrac{1}{4}\\x = \dfrac{1}{12}\end{array} \right.\) vậy `x\in{1/4;1/12}` Bình luận
Đáp án + Giải thích các bước giải:
|2x – 1/3| = 1 – 5/6
|2x – 1/3| = 1/6
Ta xét hai trường hợp:
TH1:
2x – 1/3 = 1/6
2x = 1/6 + 1/3
2x = 1/6 + 2/6
2x = 1/2
x = 1/2 : 2
x = 1/4
TH2:
2x – 1/3 = -1/6
2x = -1/6 + 1/3
2x = -1/6 + 2/6
2x = 1/6
x = 1/6 : 2
x = 1/12
=> x bằng 1/4 hoặc 1/12
Đáp án:
Giải thích các bước giải:
` |2.x-1/3| + 5/6 = 1 `
` |2.x-1/3| = 1 – 5/6 `
` |2.x – 1/3 | = 1/6 `
\(\left[ \begin{array}{l}2.x – \dfrac{1}{3}=\dfrac{1}{6}\\2.x – \dfrac{1}{3} = -\dfrac{1}{6}\end{array} \right.\)
\(\left[ \begin{array}{l}2.x =\dfrac{1}{6} + \dfrac{1}{3}\\2.x = -\dfrac{1}{6} + \dfrac{1}{3} \end{array} \right.\)
\(\left[ \begin{array}{l}2.x =\dfrac{1}{2}\\2.x = \dfrac{1}{6}\end{array} \right.\)
\(\left[ \begin{array}{l}x =\dfrac{1}{2}: 2\\x = \dfrac{1}{6}:2\end{array} \right.\)
\(\left[ \begin{array}{l}x =\dfrac{1}{4}\\x = \dfrac{1}{12}\end{array} \right.\)
vậy `x\in{1/4;1/12}`