x^ -2(m-1)x +m+2 tìm m để pt có 2 nghiệm x1/x2 thỏa mãn x1/x2+x2/x1=4 25/08/2021 Bởi Alice x^ -2(m-1)x +m+2 tìm m để pt có 2 nghiệm x1/x2 thỏa mãn x1/x2+x2/x1=4
Đáp án: \(\left[ \begin{array}{l}m = 4\\m = – \dfrac{1}{2}\end{array} \right.\) Giải thích các bước giải: Để phương trình có 2 nghiệm \(\begin{array}{l} \to {m^2} – 2m + 1 – m – 2 \ge 0\\ \to {m^2} – 3m – 1 \ge 0\\ \to {m^2} – 2m.\dfrac{3}{2} + \dfrac{9}{4} – \dfrac{5}{4} \ge 0\\ \to {\left( {m – \dfrac{3}{2}} \right)^2} \ge \dfrac{5}{4}\\ \to \left[ \begin{array}{l}m – \dfrac{3}{2} \ge \dfrac{{\sqrt 5 }}{2}\\m – \dfrac{3}{2} \le – \dfrac{{\sqrt 5 }}{2}\end{array} \right.\\ \to \left[ \begin{array}{l}m \ge \dfrac{{3 + \sqrt 5 }}{2}\\m \le \dfrac{{3 – \sqrt 5 }}{2}\end{array} \right.\\Vi – et:\left\{ \begin{array}{l}{x_1} + {x_2} = 2m – 2\\{x_1}{x_2} = m + 2\end{array} \right.\\Có:\dfrac{{{x_1}}}{{{x_2}}} + \dfrac{{{x_2}}}{{{x_1}}} = 4\\ \to \dfrac{{{x_1}^2 + {x_2}^2}}{{{x_1}{x_2}}} = 4\\ \to \dfrac{{{x_1}^2 + {x_2}^2 + 2{x_1}{x_2} – 2{x_1}{x_2}}}{{{x_1}{x_2}}} = 4\\ \to {\left( {{x_1} + {x_2}} \right)^2} – 2{x_1}{x_2} = 4{x_1}{x_2}\\ \to {\left( {{x_1} + {x_2}} \right)^2} – 6{x_1}{x_2} = 0\\ \to {\left( {2m – 2} \right)^2} – 6\left( {m + 2} \right) = 0\\ \to 4{m^2} – 8m + 4 – 6m – 12 = 0\\ \to 4{m^2} – 14m – 8 = 0\\ \to 2\left( {m – 4} \right)\left( {2m + 1} \right) = 0\\ \to \left[ \begin{array}{l}m = 4\\m = – \dfrac{1}{2}\end{array} \right.\left( {TM} \right)\end{array}\) Bình luận
Đáp án:
\(\left[ \begin{array}{l}
m = 4\\
m = – \dfrac{1}{2}
\end{array} \right.\)
Giải thích các bước giải:
Để phương trình có 2 nghiệm
\(\begin{array}{l}
\to {m^2} – 2m + 1 – m – 2 \ge 0\\
\to {m^2} – 3m – 1 \ge 0\\
\to {m^2} – 2m.\dfrac{3}{2} + \dfrac{9}{4} – \dfrac{5}{4} \ge 0\\
\to {\left( {m – \dfrac{3}{2}} \right)^2} \ge \dfrac{5}{4}\\
\to \left[ \begin{array}{l}
m – \dfrac{3}{2} \ge \dfrac{{\sqrt 5 }}{2}\\
m – \dfrac{3}{2} \le – \dfrac{{\sqrt 5 }}{2}
\end{array} \right.\\
\to \left[ \begin{array}{l}
m \ge \dfrac{{3 + \sqrt 5 }}{2}\\
m \le \dfrac{{3 – \sqrt 5 }}{2}
\end{array} \right.\\
Vi – et:\left\{ \begin{array}{l}
{x_1} + {x_2} = 2m – 2\\
{x_1}{x_2} = m + 2
\end{array} \right.\\
Có:\dfrac{{{x_1}}}{{{x_2}}} + \dfrac{{{x_2}}}{{{x_1}}} = 4\\
\to \dfrac{{{x_1}^2 + {x_2}^2}}{{{x_1}{x_2}}} = 4\\
\to \dfrac{{{x_1}^2 + {x_2}^2 + 2{x_1}{x_2} – 2{x_1}{x_2}}}{{{x_1}{x_2}}} = 4\\
\to {\left( {{x_1} + {x_2}} \right)^2} – 2{x_1}{x_2} = 4{x_1}{x_2}\\
\to {\left( {{x_1} + {x_2}} \right)^2} – 6{x_1}{x_2} = 0\\
\to {\left( {2m – 2} \right)^2} – 6\left( {m + 2} \right) = 0\\
\to 4{m^2} – 8m + 4 – 6m – 12 = 0\\
\to 4{m^2} – 14m – 8 = 0\\
\to 2\left( {m – 4} \right)\left( {2m + 1} \right) = 0\\
\to \left[ \begin{array}{l}
m = 4\\
m = – \dfrac{1}{2}
\end{array} \right.\left( {TM} \right)
\end{array}\)