2 $\sqrt[2]{2x-1}$+ $\sqrt[2]{x+3}$ -$\sqrt[2]{5x+11}$ =0

2 $\sqrt[2]{2x-1}$+ $\sqrt[2]{x+3}$ -$\sqrt[2]{5x+11}$ =0

0 bình luận về “2 $\sqrt[2]{2x-1}$+ $\sqrt[2]{x+3}$ -$\sqrt[2]{5x+11}$ =0”

  1. `ĐKXĐ: x\ge 1/2`

    `2\sqrt(2x-1)+\sqrt(x+3)-\sqrt(5x+11)=0`

    `⇔2\sqrt(2x-1)+\sqrt(x+3)=\sqrt(5x+11)`

    `⇔4(2x-1)+x+3+4\sqrt[(2x-1)(x+3)]=5x+11`

    `⇔4\sqrt[(2x-1)(x+3)]=12-4`

    `⇔\sqrt[(2x-1)(x+3)]=3-x`

    `⇔2x^2+5x-3=x^2-6x+9`

    `⇔x^2+11x-12=0`

    `⇔(x-1)(x+12)=0`

    \(⇔\left[ \begin{array}{l}x=1\\x=-12(l)\end{array} \right.\)

    Vậy `x=1`

    Bình luận

Viết một bình luận