2 TÌM X a, ( 2x + 4 )^30 =0 , b, x^10 =x , c, x ^20 – x^2 =0 , d, x^15 =x , e, (x-5)^4 = (x-5) ^6 23/11/2021 Bởi Melanie 2 TÌM X a, ( 2x + 4 )^30 =0 , b, x^10 =x , c, x ^20 – x^2 =0 , d, x^15 =x , e, (x-5)^4 = (x-5) ^6
Đáp án: Giải thích các bước giải: `a,(2x+4)^30=0` `→2x+4=0` `→2x=-4` `→x=-2` `b,x^10 =x` `→`\(\left[ \begin{array}{l}x=1\\x=0\end{array} \right.\) `c,x^20 -x^2=0` `→x^20=x^2` `→`\(\left[ \begin{array}{l}x=1\\x=-1\\x=0\end{array} \right.\) `d,x^15 =x` `to`\(\left[ \begin{array}{l}x=1\\x=0\end{array} \right.\) `e,(x-5)^4 =(x-5)^6` `to`\(\left[ \begin{array}{l}x-5=0\\x-5=-1\\x-5=1\end{array} \right.\) `to`\(\left[ \begin{array}{l}x=5\\x=4\\x=6\end{array} \right.\) Bình luận
$a$) $(2x+4)^{30} = 0$ $⇔ 2x+4 = 0$ $⇔ 2x = -4$ $⇔ x = -2$ Vậy $x=-2$. $b$) $x^{10} = x$ $⇔ x^{10} – x =0$ $⇔ x.(x^{9} – 1) = 0$ $⇒$ \(\left[ \begin{array}{l}x=0\\x=1\end{array} \right.\) Vậy $x$ $∈$ `{0;1}`. $c$) $x^{20} – x^2 = 0$ $⇔ x^2.(x^{18} – 1) = 0$ $⇒$ \(\left[ \begin{array}{l}x=0\\x=1\\x=-1\end{array} \right.\) Vậy $x$ $∈$ `{0;±1}`. $d$) $x^{15} =x$ $⇔ x^{15} – x = 0$ $⇔ x.(x^{14} – 1) = 0$ $⇒$ \(\left[ \begin{array}{l}x=0\\x=1\\x=-1\end{array} \right.\) Vậy $x$ $∈$ `{0;±1}`. $e$) $(x-5)^4 = (x-5) ^64$ $⇔ (x-5)^4 – (x-5)^6 = 0$ $⇔ (x-5)^4.[1 – (x-5)^2] = 0$ $⇒$ \(\left[ \begin{array}{l}x-5=0\\x-5=1\\x-5=-1\end{array} \right.\) $⇔$ \(\left[ \begin{array}{l}x=5\\x=6\\x=4\end{array} \right.\) Vậy $x$ $∈$ `{4;5;6}`. Bình luận
Đáp án:
Giải thích các bước giải:
`a,(2x+4)^30=0`
`→2x+4=0`
`→2x=-4`
`→x=-2`
`b,x^10 =x`
`→`\(\left[ \begin{array}{l}x=1\\x=0\end{array} \right.\)
`c,x^20 -x^2=0`
`→x^20=x^2`
`→`\(\left[ \begin{array}{l}x=1\\x=-1\\x=0\end{array} \right.\)
`d,x^15 =x`
`to`\(\left[ \begin{array}{l}x=1\\x=0\end{array} \right.\)
`e,(x-5)^4 =(x-5)^6`
`to`\(\left[ \begin{array}{l}x-5=0\\x-5=-1\\x-5=1\end{array} \right.\)
`to`\(\left[ \begin{array}{l}x=5\\x=4\\x=6\end{array} \right.\)
$a$) $(2x+4)^{30} = 0$
$⇔ 2x+4 = 0$
$⇔ 2x = -4$
$⇔ x = -2$
Vậy $x=-2$.
$b$) $x^{10} = x$
$⇔ x^{10} – x =0$
$⇔ x.(x^{9} – 1) = 0$
$⇒$ \(\left[ \begin{array}{l}x=0\\x=1\end{array} \right.\)
Vậy $x$ $∈$ `{0;1}`.
$c$) $x^{20} – x^2 = 0$
$⇔ x^2.(x^{18} – 1) = 0$
$⇒$ \(\left[ \begin{array}{l}x=0\\x=1\\x=-1\end{array} \right.\)
Vậy $x$ $∈$ `{0;±1}`.
$d$) $x^{15} =x$
$⇔ x^{15} – x = 0$
$⇔ x.(x^{14} – 1) = 0$
$⇒$ \(\left[ \begin{array}{l}x=0\\x=1\\x=-1\end{array} \right.\)
Vậy $x$ $∈$ `{0;±1}`.
$e$) $(x-5)^4 = (x-5) ^64$
$⇔ (x-5)^4 – (x-5)^6 = 0$
$⇔ (x-5)^4.[1 – (x-5)^2] = 0$
$⇒$ \(\left[ \begin{array}{l}x-5=0\\x-5=1\\x-5=-1\end{array} \right.\)
$⇔$ \(\left[ \begin{array}{l}x=5\\x=6\\x=4\end{array} \right.\)
Vậy $x$ $∈$ `{4;5;6}`.