2.tìm x,biết: a,3.x-(2.x-4(-5))=4 b,8./x-1/-5=11 c,5-2 /2.x+1/=1 31/10/2021 Bởi aihong 2.tìm x,biết: a,3.x-(2.x-4(-5))=4 b,8./x-1/-5=11 c,5-2 /2.x+1/=1
a, 3.x – [2.x – 4 .( – 5)] = 4 <=> 3.x – (2.x + 20) = 4 <=> 3.x – 2.x – 20 = 4 <=> x = 24 b, 8.|x – 1| – 5 = 11 <=> 8.|x – 1| = 16 <=> |x – 1| = 2 <=> x – 1 = 2 hoặc x – 1 = – 2 <=> x = 3 hoặc x = – 1 c, 5 – 2.|2.x + 1| = 1 <=> 2.|2.x + 1| = 4 <=> |2.x + 1| = 2 <=> 2.x + 1 = 2 hoặc 2.x + 1 = – 2 <=> 2.x = 1 hoặc 2.x = – 3 <=> x = 1/2 hoặc x = – 3/2 Bình luận
`a) 3x-(2x-4.(-5))=4` `<=> 3x-(2x+20)=4` `<=> 3x-2x-20=4` `<=> x=4+20` `<=> x=24` Vậy `x=24` `b) 8|x-1|-5=11` `<=>8|x-1|=16` `<=> |x-1|=2` `<=>`\(\left[ \begin{array}{l}x-1=2\\x-1=-2\end{array} \right.\) `<=>`\(\left[ \begin{array}{l}x=3\\x=-1\end{array} \right.\) Vậy `x∈{3;-1}` `c) 5-2|2x+1|=1` `<=> 2|2x+1|=4` `<=> |2x+1|=2` `<=>`\(\left[ \begin{array}{l}2x+1=2\\2x+1=-2\end{array} \right.\) `<=>`\(\left[ \begin{array}{l}x=\dfrac{1}{2}\\x=\dfrac{-3}{2}\end{array} \right.\) Vậy `x∈{1/2;-3/2}` Bình luận
a, 3.x – [2.x – 4 .( – 5)] = 4
<=> 3.x – (2.x + 20) = 4
<=> 3.x – 2.x – 20 = 4
<=> x = 24
b, 8.|x – 1| – 5 = 11
<=> 8.|x – 1| = 16
<=> |x – 1| = 2
<=> x – 1 = 2 hoặc x – 1 = – 2
<=> x = 3 hoặc x = – 1
c, 5 – 2.|2.x + 1| = 1
<=> 2.|2.x + 1| = 4
<=> |2.x + 1| = 2
<=> 2.x + 1 = 2 hoặc 2.x + 1 = – 2
<=> 2.x = 1 hoặc 2.x = – 3
<=> x = 1/2 hoặc x = – 3/2
`a) 3x-(2x-4.(-5))=4`
`<=> 3x-(2x+20)=4`
`<=> 3x-2x-20=4`
`<=> x=4+20`
`<=> x=24`
Vậy `x=24`
`b) 8|x-1|-5=11`
`<=>8|x-1|=16`
`<=> |x-1|=2`
`<=>`\(\left[ \begin{array}{l}x-1=2\\x-1=-2\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=3\\x=-1\end{array} \right.\)
Vậy `x∈{3;-1}`
`c) 5-2|2x+1|=1`
`<=> 2|2x+1|=4`
`<=> |2x+1|=2`
`<=>`\(\left[ \begin{array}{l}2x+1=2\\2x+1=-2\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=\dfrac{1}{2}\\x=\dfrac{-3}{2}\end{array} \right.\)
Vậy `x∈{1/2;-3/2}`