(x – 2) (y – 3) = 0 (x – 2) (y – 5) = 2 (x – 5) (y – 6) = 11 với x,y thuộc Z

(x – 2) (y – 3) = 0
(x – 2) (y – 5) = 2
(x – 5) (y – 6) = 11
với x,y thuộc Z

0 bình luận về “(x – 2) (y – 3) = 0 (x – 2) (y – 5) = 2 (x – 5) (y – 6) = 11 với x,y thuộc Z”

  1. Đáp án:

     

    Giải thích các bước giải:

     ta có:

    (x-2)(y-3)=0

    ⇒\(\left[ \begin{array}{l}x-2=0\\y-3=0\end{array} \right.\)

    ⇒\(\left[ \begin{array}{l}x=2\\y=3\end{array} \right.\)

    (x-2)(y-5)=0

    ⇒\(\left[ \begin{array}{l}x-2=2\\y-5=1\end{array} \right.\)

       \(\left[ \begin{array}{l}x-2=1\\y-5=2\end{array} \right.\)

       \(\left[ \begin{array}{l}x-2=-2\\y-5=-1\end{array} \right.\)

       \(\left[ \begin{array}{l}x-2=-1\\y-5=-2\end{array} \right.\)

    ⇒\(\left[ \begin{array}{l}x=4\\y=6\end{array} \right.\)

       \(\left[ \begin{array}{l}x=3\\y=7\end{array} \right.\)

       \(\left[ \begin{array}{l}x=0\\y=4\end{array} \right.\)

       \(\left[ \begin{array}{l}x=1\\y=3\end{array} \right.\)  

    (x-5)(y-6)=1

    ⇒\(\left[ \begin{array}{l}x-5=11\\y-6=1\end{array} \right.\)

       \(\left[ \begin{array}{l}x-5=1\\y-6=11\end{array} \right.\)

       \(\left[ \begin{array}{l}x-5=-11\\y-6=-1\end{array} \right.\)

       \(\left[ \begin{array}{l}x-5=-1\\y-6=-11\end{array} \right.\)

    ⇒\(\left[ \begin{array}{l}x=16\\y=7\end{array} \right.\)

       \(\left[ \begin{array}{l}x=6\\y=17\end{array} \right.\)

       \(\left[ \begin{array}{l}x=-6\\y=5\end{array} \right.\)

       \(\left[ \begin{array}{l}x=4\\y=-5\end{array} \right.\)  

    Bình luận
  2. Đáp án + giải thích bước giải :

    $1/$ `(x – 2) (y – 3) = 0`

    `⇔` \(\left[ \begin{array}{l}x-2=0\\y-3=0\end{array} \right.\) 

    `⇔` \(\left[ \begin{array}{l}x=0+2\\y=0+3\end{array} \right.\) 

    `⇔` \(\left[ \begin{array}{l}x=2\\y=3\end{array} \right.\) 

    Vậy `(x;y) ∈ {2;3}` thỏa mãn `x,y ∈ ZZ`

    $2/$ `(x – 2) (y – 5) = 2`

    `⇔` \(\left\{ \begin{array}{l}x-2\\y-5\end{array} \right.\) `∈ Ư (2) = {±1; ±2}`

    `⇔` \(\left\{ \begin{array}{l}x=3\\x=1\\x=4\\x=0\end{array} \right.\)

    `⇔` \(\left\{ \begin{array}{l}y=6\\y=4\\y=7\\y=3\end{array} \right.\)

    Vậy `x ∈ {3;1;4;0}; y ∈ {6;4;7;3}` thỏa mãn `x,y ∈ ZZ`

    $3/$ `(x – 5) (y – 6) = 11`

    `⇔` \(\left\{ \begin{array}{l}x-5\\y-6\end{array} \right.\) `∈ Ư (11) = {±1 ;±11}`

    `⇔` \(\left\{ \begin{array}{l}x=6\\x=4\\x=16\\x=-6\end{array} \right.\)

    `⇔` \(\left\{ \begin{array}{l}y=7\\y=5\\y=17\\y=-5\end{array} \right.\)

    Vậy `x ∈ {6;4;16;-6}; y ∈ {7;5;17;-5}` thỏa mãn `x,y ∈ ZZ`

    Bình luận

Viết một bình luận