2cos^2(x+pi/3)+5sin(x+pi/3)-4=0 Cos2x-4cosx+5/2=0 Sin^4x+cos^4x=cos2x Cos^4x+sin^4x=sin2x-1/2

2cos^2(x+pi/3)+5sin(x+pi/3)-4=0
Cos2x-4cosx+5/2=0
Sin^4x+cos^4x=cos2x
Cos^4x+sin^4x=sin2x-1/2

0 bình luận về “2cos^2(x+pi/3)+5sin(x+pi/3)-4=0 Cos2x-4cosx+5/2=0 Sin^4x+cos^4x=cos2x Cos^4x+sin^4x=sin2x-1/2”

  1. 3) ${\sin}^4x+{\cos}^4x=\cos 2x$
    $\Rightarrow (\dfrac{1+\cos 2x}{2})^2+(\dfrac{1-\cos 2x}{2})^2=\cos 2x$
    $\Rightarrow \dfrac{1+2\cos2x+{\cos}^22x}{4}+\dfrac{1-2\cos2x+{\cos}^22x}{4}=\cos 2x$
    $\Rightarrow 1+\dfrac{{\cos}^22x}{2}=\cos 2x$
    $\Rightarrow \cos 2x=1$
    $\Rightarrow 2x=\dfrac{\pi}{2}+k\pi$
    $\Rightarrow x=\dfrac{\pi}{4}+k\dfrac{\pi}{2},(k\in\mathbb Z)$

    2) $\cos 2x-4\cos x+\dfrac{5}{2}=0$
    $\Rightarrow 2{\cos}^2x-1-4\cos x+\dfrac{5}{2}=0$
    $\Rightarrow \left[ \begin{array}{l} \cos x=\dfrac{3}{2}>1\text{ (loại)} \\ \cos x=1(tm) \end{array} \right .$
    $\Rightarrow x=k2\pi,(k\in\mathbb Z)$.

    Bình luận
  2. Đáp án:

    Giải thích các bước giải:

    a) 2cos^2(x + π/3) + 5sin(x+ π/3) – 4 =0

    => 2(1 – sin^2)(x + π/3)+5sin(x + π/3) – 4= 0

    => 2 – 2sin^2(x+π/3)+5sin(x+π/3) – 4 =0

    => -2sin^2(x+π/3) + 5sin(x+π/3) – 2=0

    Bạn bấm mode 5 3 rồi làm tiếp nha

    b) cos2x – 4cosx +5/2 =0

    => 2cos^2x – 1 – 4cosx + 5/2 =0

    => 2cos^2x – 4cosx + 3/2 =0

    Bạn bấm mode 5 3 rồi làm tiếp nha

    c) Sin^4x + cos^4x = cos2x

    =>1 – 2sin^2xcos^2x = cos2x

    => 1- 2 (sin^2 2x)/4 = cos2x

    => 1 – (sin^2 2x)/2 = cos2x

    => 2 – sin^2 2x = 2cos2x

    => 2 – (1 – cos^2 2x) = 2cos2x

    => cos^2 2x – 2cos2x +1 =0

    Bạn bấm mode 5 3 rồi giải tiếp nha

    Câu d tương tự câu c

    Bình luận

Viết một bình luận