2n : (1 + $\frac{1}{1+2}$ + $\frac{1}{1+2+3}$ + $\frac{1}{1+2+3+4}$ +…+ $\frac{1}{1+2+3+4+…+n}$ 25/10/2021 Bởi Skylar 2n : (1 + $\frac{1}{1+2}$ + $\frac{1}{1+2+3}$ + $\frac{1}{1+2+3+4}$ +…+ $\frac{1}{1+2+3+4+…+n}$
Đáp án: $2(n+1)$ Giải thích các bước giải: $B=2n:\left ( 1+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+…+\dfrac{1}{1+2+3+4+…+n} \right )\\A=1+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+…+\dfrac{1}{1+2+3+4+…+n}\\=1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+…+\dfrac{1}{\dfrac{n(n+1)}{2}}\\\Rightarrow \dfrac{1}{2}A=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+…+\dfrac{1}{n(n+1)}\\=\dfrac{1}{2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+…+\dfrac{1}{n(n+1)}\\=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+…+\dfrac{1}{n}-\dfrac{1}{n+1}\\=1-\dfrac{1}{n+1}\\=\dfrac{n+1-1}{n+1}=\dfrac{n}{n+1}\\\Rightarrow B=2n:\dfrac{n}{n+1}=2n.\dfrac{n+1}{n}=2(n+1)$ Bình luận
Đáp án:
$2(n+1)$
Giải thích các bước giải:
$B=2n:\left ( 1+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+…+\dfrac{1}{1+2+3+4+…+n} \right )\\
A=1+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+…+\dfrac{1}{1+2+3+4+…+n}\\
=1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+…+\dfrac{1}{\dfrac{n(n+1)}{2}}\\
\Rightarrow \dfrac{1}{2}A=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+…+\dfrac{1}{n(n+1)}\\
=\dfrac{1}{2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+…+\dfrac{1}{n(n+1)}\\
=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+…+\dfrac{1}{n}-\dfrac{1}{n+1}\\
=1-\dfrac{1}{n+1}\\
=\dfrac{n+1-1}{n+1}=\dfrac{n}{n+1}\\
\Rightarrow B=2n:\dfrac{n}{n+1}=2n.\dfrac{n+1}{n}=2(n+1)$