2sin(3x-15°)=căn3 Cos 2x +9cossx-10=0 Sin2x-căn3 cos2x=1 1+sinx-cos2x -sin3x=0 Giúp e vs e đag kiểm tra … 21/09/2021 Bởi Ruby 2sin(3x-15°)=căn3 Cos 2x +9cossx-10=0 Sin2x-căn3 cos2x=1 1+sinx-cos2x -sin3x=0 Giúp e vs e đag kiểm tra …
$\begin{array}{l} 1)pt \Leftrightarrow \sin \left( {3x – {{15}^0}} \right) = \frac{{\sqrt 3 }}{2}\\ \Leftrightarrow \left[ \begin{array}{l} 3x – {15^0} = {60^0} + k{360^0}\\ 3x – {15^0} = {120^0} + k{360^0} \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l} 3x = {75^0} + k{360^0}\\ 3x = {135^0} + k{360^0} \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l} x = {15^0} + k{120^0}\\ x = {45^0} + k{120^0} \end{array} \right.\\ 2)\cos 2x + 9\cos x – 10 = 0\\ \Leftrightarrow 2{\cos ^2}x – 1 + 9\cos x – 10 = 0\\ \Leftrightarrow 2{\cos ^2}x + 9\cos x – 11 = 0\\ \Leftrightarrow \left[ \begin{array}{l} \cos x = 1\\ \cos x = – \frac{{11}}{2}\left( {VN} \right) \end{array} \right. \Leftrightarrow x = k2\pi \\ 3)\sin 2x – \sqrt 3 \cos 2x = 1\\ \Leftrightarrow \frac{1}{2}\sin 2x – \frac{{\sqrt 3 }}{2}\cos 2x = \frac{1}{2}\\ \Leftrightarrow \sin \left( {2x – \frac{\pi }{3}} \right) = \sin \frac{\pi }{6}\\ \Leftrightarrow \left[ \begin{array}{l} 2x – \frac{\pi }{3} = \frac{\pi }{6} + k2\pi \\ 2x – \frac{\pi }{3} = \frac{{5\pi }}{6} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l} 2x = \frac{\pi }{2} + k2\pi \\ 2x = \frac{{7\pi }}{6} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l} x = \frac{\pi }{4} + k\pi \\ x = \frac{{7\pi }}{{12}} + k\pi \end{array} \right.\\ 4)1 + \sin x – \cos 2x – \sin 3x = 0\\ \Leftrightarrow 1 + \sin x – \left( {1 – 2{{\sin }^2}x} \right) – \left( {3\sin x – 4{{\sin }^3}x} \right) = 0\\ \Leftrightarrow 1 + \sin x – 1 + 2{\sin ^2}x – 3\sin x + 4{\sin ^3}x = 0\\ \Leftrightarrow 4{\sin ^3}x + 2{\sin ^2}x – 2\sin x = 0\\ \Leftrightarrow \sin x\left( {2{{\sin }^2}x + \sin x – 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} \sin x = 0\\ \sin x = – 1\\ \sin x = \frac{1}{2} \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = k\pi \\ x = – \frac{\pi }{2} + k\pi \\ x = \frac{\pi }{6} + k2\pi \\ x = \frac{{5\pi }}{6} + k2\pi \end{array} \right. \end{array}$ Bình luận
$\begin{array}{l}
1)pt \Leftrightarrow \sin \left( {3x – {{15}^0}} \right) = \frac{{\sqrt 3 }}{2}\\
\Leftrightarrow \left[ \begin{array}{l}
3x – {15^0} = {60^0} + k{360^0}\\
3x – {15^0} = {120^0} + k{360^0}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
3x = {75^0} + k{360^0}\\
3x = {135^0} + k{360^0}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = {15^0} + k{120^0}\\
x = {45^0} + k{120^0}
\end{array} \right.\\
2)\cos 2x + 9\cos x – 10 = 0\\
\Leftrightarrow 2{\cos ^2}x – 1 + 9\cos x – 10 = 0\\
\Leftrightarrow 2{\cos ^2}x + 9\cos x – 11 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\cos x = 1\\
\cos x = – \frac{{11}}{2}\left( {VN} \right)
\end{array} \right. \Leftrightarrow x = k2\pi \\
3)\sin 2x – \sqrt 3 \cos 2x = 1\\
\Leftrightarrow \frac{1}{2}\sin 2x – \frac{{\sqrt 3 }}{2}\cos 2x = \frac{1}{2}\\
\Leftrightarrow \sin \left( {2x – \frac{\pi }{3}} \right) = \sin \frac{\pi }{6}\\
\Leftrightarrow \left[ \begin{array}{l}
2x – \frac{\pi }{3} = \frac{\pi }{6} + k2\pi \\
2x – \frac{\pi }{3} = \frac{{5\pi }}{6} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
2x = \frac{\pi }{2} + k2\pi \\
2x = \frac{{7\pi }}{6} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{4} + k\pi \\
x = \frac{{7\pi }}{{12}} + k\pi
\end{array} \right.\\
4)1 + \sin x – \cos 2x – \sin 3x = 0\\
\Leftrightarrow 1 + \sin x – \left( {1 – 2{{\sin }^2}x} \right) – \left( {3\sin x – 4{{\sin }^3}x} \right) = 0\\
\Leftrightarrow 1 + \sin x – 1 + 2{\sin ^2}x – 3\sin x + 4{\sin ^3}x = 0\\
\Leftrightarrow 4{\sin ^3}x + 2{\sin ^2}x – 2\sin x = 0\\
\Leftrightarrow \sin x\left( {2{{\sin }^2}x + \sin x – 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\sin x = 0\\
\sin x = – 1\\
\sin x = \frac{1}{2}
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = k\pi \\
x = – \frac{\pi }{2} + k\pi \\
x = \frac{\pi }{6} + k2\pi \\
x = \frac{{5\pi }}{6} + k2\pi
\end{array} \right.
\end{array}$